Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In a wireless sensor network, we often require the deployment of new nodes to extend the lifetime of the network because some sensor nodes may be lost due to power exhaustion problem or they may be also malicious nodes. In order to protect malicious nodes from joining the sensor network, access control mechanism becomes a major challenging problem in the design of sensor network protocols. Existing access control protocols designed for wireless sensor networks require either high communication overheads or they are not scalable due to involvement of the base station during authentication and key establishment processes. In this paper, we propose a new access control scheme for large-scale distributed wireless sensor networks, which not only identifies the identity of each node but it has also ability to differentiate between old nodes and new nodes. The proposed scheme does not require involvement of the base station during authentication and key establishment processes, and it can be easily implemented as a dynamic access control protocol. In addition, our scheme significantly reduces communication costs in order to authenticate neighbor nodes among each other and establish symmetric keys between neighbor nodes as compared with existing approaches. Further, our scheme is secure against different attacks and unconditionally secure against node capture attacks. The simulation results of our scheme using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool ensure that our scheme is safe.
Establishing pairwise symmetric keys is a critical resource management issue in wireless sensor networks. Usually deployed in a hostile environment where malicious users or adversaries are bound to exist, wireless sensors are subject to a general attack model—a sensor node can be captured, re-programmed, and consequently exhibit arbitrary faulty behaviors. Thus, sensor key management is a challenging research issue, attracting a high level of interests in recent years. In general, a key management system works by first pre-allocating some keys to each sensor before deployment. After deployment, neighboring sensors can undergo a discovery process to set up shared keys for secure communications. An efficient key management scheme has to work under severe system constraints including limited memory storage and communication overhead in each sensor. In this chapter we provide a detailed survey of state-of-the-art sensor key management techniques that have demonstrated a high degree of effectiveness.