Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PREDICTION OF REACTION KINETIC IN MECHANICALLY ACTIVATED SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS PROCESS

    In this paper we have tried to develop a semi-empirical formula for estimation of starting time of reactions during mechanical alloying process according to self-propagating high temperature synthesis (SHS) mechanism. For this purpose, three SHS systems containing Ti–C, Mo–Si and Si–C were selected and their behaviors were observed. Aforementioned systems were milled in a planetary ball mill equipped with temperature sensor detector of cups. Samplings were done at different times of discontinuously milling. To change mills' energy, stainless steel and tungsten carbide balls were used. In order to detect the phases and characterizations of milled powder, XRD instrument was utilized. Results showed that all productions were synthesized after sudden increase in temperature. Maximum measured temperature and critical time had up and downtrends for production of TiC, MoSi2 and SiC, respectively. Crystalline size of milled powder had nano-meter scale. By using experimental data along with theoretical equations, a semi-empirical formula between critical time for transformation of raw materials to productions, type of milled system and ball mill parameter can be presented with high accuracy. According to calculated formula, critical time was related to ball mill energy and Gibbs free energy of milled system with direct and inverse proportionality, respectively.

  • articleNo Access

    Adsorptive Removal of Methylene Blue Using Magnetic Biochar Derived from Agricultural Waste Biomass: Equilibrium, Isotherm, Kinetic Study

    Wastewater discharge from textile industries contribute much to water pollution and threaten the aqua ecosystem balance. Synthesis of agriculture waste based adsorbent is a smart move toward overcoming the critical environmental issues as well as a good waste management process implied. This research work describes the adsorption of methylene blue dye from aqueous solution on nickel oxide attached magnetic biochar derived from mangosteen peel. A series of characterization methods was employed such as FTIR, FESEM analysis and BET surface area analyzer to understand the adsorbent behavior produced at a heating temperature of 800C for 20min duration. The adsorbate pH value was varied to investigate the adsorption kinetic trend and the isotherm models were developed by determining the equilibrium adsorption capacity at varied adsorbate initial concentration. Equilibrium adsorption isotherm models were measured for single component system and the calculated data were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin–Radushkevich isotherm equations. The Langmuir, Freundlich and Tempkin isotherm model exhibit a promising R2-correlation value of more than 0.95 for all three isotherm models. The Langmuir isotherm model reflectsan equilibrium adsorption capacity of 22.883mgg1.

  • articleNo Access

    Adsorption, Kinetic and Regeneration Studies of n-Hexane on MIL-101(Cr)/AC

    Nano01 Aug 2019

    MIL-101(Cr)/AC was synthesized by in situ incorporation of activated carbon powder via hydrothermal method. The water stability, n-hexane adsorption and regeneration of the MIL-101(Cr)/AC were experimentally measured. The results showed that the MIL-101(Cr)/AC exhibited the larger surface area (3319.3m2/g) than that of MIL-101(Cr) and AC, respectively. The addition of activated carbon was beneficial to improve the yield of MIL-101(Cr)/AC. The pore structure parameter and XRD of the MIL-101(Cr)/AC changed little after in water for 24h. Furthermore, the adsorption capacity of MIL-101(Cr)/AC for n-hexane was 786mg/g, which increased to 23.0% and 27.7% compared with MIL-101(Cr) and AC, respectively. Kinetic fitting of data indicated that the pseudo-first order model can more accurately describe the adsorption process of n-hexane on MIL-101(Cr)/AC and the intraparticle diffusion was not the sole rate-controlling step. Besides, the regeneration efficiency of MIL-101(Cr)/AC was over 92% after 10 consecutive n-hexane adsorption/desorption cycles.

  • chapterNo Access

    Adsorption of acetic acid from dilute solution on zeolite 13X: Isotherm, kinetic and thermodynamic studies*

    The adsorption behavior of acetic acid on zeolite 13X was studied at 25°C, 35°C and 45°C in a batch experiment. Experimental data were applied to pseudo-first-order and pseudo-second-order adsorption kinetic models, and tested against Langmuir and Freundlich isotherms. Thermodynamic parameters (ΔG, ΔH and ΔS) of adsorption were also calculated. The data fit the pseudo-second-order kinetic model and Freundlich isotherm well. The calculated values of ΔG, ΔH and ΔS indicate that the adsorption is spontaneous and endothermic; it causes an increased extent of randomness at the solid-solution interface.