Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We compute the knot Floer homology of knots with at most 12 crossings, as well as the τ invariant for knots with at most 11 crossings, using the combinatorial approach described by Manolescu, Ozsváth and Sarkar. We review their construction, giving two examples that can be workout out by hand, and we explain some ideas we used to simplify the computation. We conclude with a discussion of knot Floer homology for small knots, and we formulate a conjecture about the behavior of knot Floer homology under mutation, paying especially close attention to the Kinoshita–Terasaka knot and its Conway mutant. Finally, we discuss a conjecture of Rasmussen on relationship between Khovanov homology and knot Floer homology, and observe that it is consistent with our calculations.
Using a Heegaard diagram for the pullback of a knot K ⊂ S3 in its double branched cover Σ2(K), we give a combinatorial proof for the invariance of the associated knot Floer homology over ℤ.
The aim of this paper is to take benefit of the foam nature of the Khovanov–Kuperberg algebras to compute the Grothendieck groups of their categories of finite-dimensional projective modules. The computation relies on the Hattori–Stallings trace and some geometrical properties of foams in the solid torus.
The goal of this paper is twofold. First, we find a natural home for the double affine Hecke algebras (DAHA) in the physics of BPS states. Second, we introduce new invariants of torus knots and links called hyperpolynomials that address the “problem of negative coefficients” often encountered in DAHA-based approaches to homological invariants of torus knots and links. Furthermore, from the physics of BPS states and the spectra of singularities associated with Landau–Ginzburg potentials, we also describe a rich structure of differentials that act on homological knot invariants for exceptional groups and uniquely determine the latter for torus knots.