Please login to be able to save your searches and receive alerts for new content matching your search criteria.
There are obvious inequalities relating the Nakanishi index of a knot, the bridge number, the degree 2n of the Alexander polynomial and the length of the chain of Alexander ideals. We give examples for every positive value of n to show that these bounds are sharp.
Our longterm plan is to classify knot modules and pairings by utilizing the power of computational number theory. The first step in this is to define invariants for which any given value arises from only finitely many modules: this is the purpose of the present paper.