Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    KNOWLEDGE BASE REFORMATION: PREPARING FIRST-ORDER THEORIES FOR EFFICIENT PROPOSITIONAL REASONING

    We present an approach to knowledge compilation that transforms a function-free first-order Horn knowledge base to propositional logic. This form of compilation is important since the most efficient reasoning methods are defined for propositional logic, while knowledge is most conveniently expressed within a first-order language. To obtain compact propositional representations, we employ techniques from (ir)relevance reasoning as well as theory transformation via unfold/fold transformations. Application areas include diagnosis, planning, and vision. Preliminary experiments with a hypothetical reasoner indicate that our method may yield significant speed-ups.

  • articleNo Access

    Compiling CSPs: A Complexity Map of (Non-Deterministic) Multivalued Decision Diagrams

    Constraint Satisfaction Problems (CSPs) offer a powerful framework for representing a great variety of problems. The difficulty is that most of the requests associated with CSPs are NP-hard. When these requests have to be addressed online, Multivalued Decision Diagrams (MDDs) have been proposed as a way to compile CSPs.

    In the present paper, we draw a compilation map of MDDs, in the spirit of the NNF compilation map, analyzing MDDs according to their succinctness and to their tractable transformations and queries. Deterministic ordered MDDs are a generalization of ordered binary decision diagrams to non-Boolean domains: unsurprisingly, they have similar capabilities. More interestingly, our study puts forward the interest of non-deterministic ordered MDDs: when restricted to Boolean domains, they capture OBDDs and DNFs as proper subsets and have performances close to those of DNNFs. The comparison to classical, deterministic MDDs shows that relaxing the determinism requirement leads to an increase in succinctness and allows more transformations to be satisfied in polynomial time (typically, the disjunctive ones). Experiments on random problems confirm the gain in succinctness.

  • articleNo Access

    Representation Shifts Using Knowledge Compilation

    Tractability versus expressiveness is a problem underlying the current generation of problem solvers. It is desirable to specify the problem, along with knowledge required for its solution, in the most expressive means possible. However, from the perspective of the solver, the most efficient representation is the least expressive one. One solution to this problem is to devise a means of transforming an expressive problem description into an efficient problem solver. Knowledge compilation is the process of transforming a domain theory into a form specialized for the solution of a given problem set. This paper will present OPCOMP, a system devised to compile a first order quantifier free predicate calculus domain theory into a problem reduction solver.