Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The surface segregation, structure, and valence band density of states of Pt3Ni(100), (110), and (111) single crystals are characterized with low energy ion scattering (LEIS), low energy electron diffraction (LEED), and ultraviolet photoemission spectroscopy (UPS). The results of LEIS clearly reveal the complete surface segregation of Pt to the top layer on all crystal alloys. LEED indicates the (5 × 1) surface reconstruction on the Pt3Ni(100), while (110) and (111) surfaces show (2 × 1) and (1 × 1) patterns, respectively, identical to Pt single crystals. The valence bands density of states on Pt3Ni alloys are compared to those of Pt single crystals via UPS measurements.
Analysis using MeV ion beams is a thin film characterisation technique invented some 50 years ago which has recently had the benefit of a number of important advances. This review will cover damage profiling in crystals including studies of defects in semiconductors, surface studies, and depth profiling with sputtering. But it will concentrate on thin film depth profiling using Rutherford backscattering, particle induced X-ray emission and related techniques in the deliberately synergistic way that has only recently become possible. In this review of these new developments, we will show how this integrated approach, which we might call "total IBA", has given the technique great analytical power.
Analysis using MeV ion beams is a thin film characterisation technique invented some 50 years ago which has recently had the benefit of a number of important advances. This review will cover damage profiling in crystals including studies of defects in semiconductors, surface studies, and depth profiling with sputtering. But it will concentrate on thin film depth profiling using Rutherford backscattering, particle induced X-ray emission and related techniques in the deliberately synergistic way that has only recently become possible. In this review of these new developments, we will show how this integrated approach, which we might call “total IBA”, has given the technique great analytical power.