Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THE SURPRISING PHENOMENON OF LEVEL MERGING IN FINITE FERMI SYSTEMS

    When applied to a finite Fermi system having a degenerate single-particle spectrum, the Landau-Migdal Fermi-liquid approach leaves room for the possibility that different single-particle energy levels merge with one another. It will be argued that the opportunity for this behavior exists over a wide range of strongly interacting quantum many-body systems. An inherent feature of the mergence phenomenon is the presence of nonintegral quasiparticle occupation numbers, which implies a radical modification of the standard quasiparticle picture. Consequences of this alteration are surveyed for nuclear, atomic, and solid-state systems.

  • articleNo Access

    Influence of polydispersity on the isotropic-nematic boundary in melt of semiflexible diblock copolymer

    The analytical expressions have been obtained to describe the dependence of spinodal curve at which isotropic state of polydisperse melt of semiflexible diblock copolymer becomes unstable with respect to formation of nematic state on the polydispersity indices of the blocks, parameters of anisotropic interactions, and flexibility of blocks. The flexibility of blocks is taken into account within discrete worm-like chain model, lengths of blocks are assumed to be distributed by the Schulz–Zimm distribution. It is shown that increase of degree of polydispersity of blocks yields the increase of nematic spinodal temperature.

  • articleFree Access

    Fermi surface renormalization group

    The low energy manifold for fermions at finite density is the Fermi surface. I describe renormalization group (RG) in which modes encountered on approaching the Fermi surface are systematically integrated out. The fixed point is described by strictly marginal coupling functions identified as the Landau parameters and marginally relevant coupling functions describing the BCS instability in various angular momentum channels.

  • chapterNo Access

    THE SURPRISING PHENOMENON OF LEVEL MERGING IN FINITE FERMI SYSTEMS

    When applied to a finite Fermi system having a degenerate single-particle spectrum, the Landau-Migdal Fermi-liquid approach leaves room for the possibility that different single-particle energy levels merge with one another. It will be argued that the opportunity for this behavior exists over a wide range of strongly interacting quantum many-body systems. An inherent feature of the mergence phenomenon is the presence of nonintegral quasiparticle occupation numbers, which implies a radical modification of the standard quasiparticle picture. Consequences of this alteration are surveyed for nuclear, atomic, and solid-state systems.