Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The aim of this paper is to derive new representations for the Hankel and Bessel functions, exploiting the reformulation of the method of steepest descents by Berry and Howls [Hyperasymptotics for integrals with saddles, Proc. R. Soc. Lond. A434 (1991) 657–675]. Using these representations, we obtain a number of properties of the large-order asymptotic expansions of the Hankel and Bessel functions due to Debye, including explicit and numerically computable error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.
In this paper, we derive new representations for the incomplete gamma function, exploiting the reformulation of the method of steepest descents by C. J. Howls [Hyperasymptotics for integrals with finite endpoints, Proc. Roy. Soc. London Ser. A439 (1992) 373–396]. Using these representations, we obtain a number of properties of the asymptotic expansions of the incomplete gamma function with large arguments, including explicit and realistic error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.