Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    The resurgence properties of the large-order asymptotics of the Hankel and Bessel functions

    The aim of this paper is to derive new representations for the Hankel and Bessel functions, exploiting the reformulation of the method of steepest descents by Berry and Howls [Hyperasymptotics for integrals with saddles, Proc. R. Soc. Lond. A434 (1991) 657–675]. Using these representations, we obtain a number of properties of the large-order asymptotic expansions of the Hankel and Bessel functions due to Debye, including explicit and numerically computable error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.

  • articleNo Access

    The resurgence properties of the incomplete gamma function, I

    In this paper, we derive new representations for the incomplete gamma function, exploiting the reformulation of the method of steepest descents by C. J. Howls [Hyperasymptotics for integrals with finite endpoints, Proc. Roy. Soc. London Ser. A439 (1992) 373–396]. Using these representations, we obtain a number of properties of the asymptotic expansions of the incomplete gamma function with large arguments, including explicit and realistic error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.