Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Porphyrins and phthalocyanines are photosensitizers (PS) that are used in clinical imaging, detection of cancer cells and are particularly applied in photodynamic therapy (PDT). Many scientists have been focused on the design of different porphyrin compounds. However, similar to other anti-cancer agents, they cannot selectively recognize tumor tissues. Scientists are seeking new methods to overcome this problem and to find appropriate targeted delivery strategies. Plant lectins are especially suitable molecules for such targeting as they preferentially recognize specific antigens on the glycosylated cancer cells. This review will give more detailed information about the dual function of lectins and their interactions with PSs, which is a new perspective in targeted PDT. The implications and potential applications of such studies will also be discussed.
Porphyrins and phthalocyanines are photosensitizers (PS) that are used in clinical imaging, detection of cancer cells and are particularly applied in photodynamic therapy (PDT). Many scientists have been focused on the design of different porphyrin compounds. However, similar to other anti-cancer agents, they cannot selectively recognize tumor tissues. Scientists are seeking new methods to overcome this problem and to find appropriate targeted delivery strategies. Plant lectins are especially suitable molecules for such targeting as they preferentially recognize specific antigens on the glycosylated cancer cells. This review will give more detailed information about the dual function of lectins and their interactions with PSs, which is a new perspective in targeted PDT. The implications and potential applications of such studies will also be discussed.
Macromolecular assemblies, like viruses, are often built by multiple copies of a few components. These may have similar or diverse functions. The multivalency of the assembly allows ligand recognition with high avidity. Nevertheless, affinity is linked to the monovalent ligand interaction, related to the nature of the interactive surface. Such interactions can be followed in real time by the aid of surface plasmon resonance. Thus a sensor surface may be prepared with either the assembly or the ligand immobilized at the sensor and their interaction studied. Kinetic and thermodynamic properties of ligand binding to the macro-molecular assembly can be determined. Variations in the structure of the assembly, like those occurring during virus infection may also be revealed by this technique.