Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The dynamical property of ground state CaBr formed in the reaction of Ca atom with CH3Br has been studied with the quasi-classical trajectory method based on a constructed extended London-Eyring-Polanyi-Sato potential energy surface. In this paper, we report state-to-state distributions in the reaction of Ca with CH3Br. They are vibrational distribution, rotational distribution, rotational alignments of the product CaBr, and reaction cross section, which are under detailed investigation. The vibrational distribution of CaBr clearly shows that the peak is located at v = 8 at collision energy Ecol = 12.22 kcal/mol. The calculated results also show that the peak value of rotational population of the product CaBr is located at J = 50 at collision energy 12.22 kcal/mol. The reaction cross section increases with the increasing collision energy from 0.15 to 0.53 eV. The product rotational alignments deviate slightly from -0.5 and increase while the collision energy of reagent increase. By comparing with the experimental data, it can be found that the theoretical results closely agree with the experimental ones.
The chemical reaction dynamics between Sr atom and CF3Br has been studied by using the method of quasi-classical trajectory calculation on the London-Eyring-Polanyi-Sato potential energy surface. The vibrational distribution, reaction cross section and rotational alignment of the product SrBr have been calculated. The calculated results indicate that the cross section of this reaction decreases and the product rotational alignment increases with the increase in collision energy. It has been found that low collision energy generates the abstraction reaction whereas high collision energy leads to the insertion. The conclusions in this paper agree well with experimental data and some relative theoretical results as well.