Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Unmanned Aerial Vehicles (UAVs) encounter wind gusts during outdoor operations, impacting their position holding, particularly for quadrotors. This vulnerability is amplified during the autonomous docking to outdoor charging stations. The integration of real-time wind preview information for UAV gust rejection control has become more feasible with advances in remote wind sensor technologies like LiDAR. In this study, a ground-based LiDAR system is proposed to predict wind gusts at the landing site of quadrotors. The acquired wind preview data are subsequently utilized by the Model Predictive Control (MPC) to effectively mitigate disturbances. To validate the proposed methodology, a nonlinear simulation environment has been established using LiDAR data collected from comprehensive field tests. The results demonstrate a notable improvement in the system performance compared to benchmark results. This research underscores the practical utility of real-time wind preview information, facilitated by LiDAR technology, in enhancing the overall operational resilience of UAVs, especially quadrotors, during challenging environmental conditions.
We investigate the use of multiple scattering via Multiple-Field-Of-View (MFOV) lidar signals to characterize bioaerosol particles size and concentration from ground based lidar over distances shorter than a few kilometers. The MFOV lidar signal is calculated for background aerosols at a wavelength 355 nm for a visibility of 30 km. The optical depths studied are small and the calculations are restricted to second order scattering. Also since background aerosols are constituted of relatively small particles which diffuse the light at large angles, the fields of view (FOV) range from 1 to 100 mrad full angle. We show that the MFOV lidar measurements contain exploitable information on particle size and extinction.
Standoff LIDAR detection of BW agents depends on accurate knowledge of the infrared and ultraviolet optical elastic scatter (ES) and ultraviolet fluorescence (UVF) signatures of bio-agents and interferents. MIT Lincoln Laboratory has developed the Standoff Aerosol Active Signature Testbed (SAAST) for measuring polarization-dependent ES cross sections from aerosol samples at all angles including 180° (direct backscatter) [1]. Measurements of interest include the dependence of the ES and UVF signatures on several spore production parameters including growth medium, sporulation protocol, washing protocol, fluidizing additives, and degree of aggregation. Using SAAST, we have made measurements of the polarization-dependent ES signature of Bacillus globigii (atropheaus, Bg) spores grown under different growth methods. We have also investigated one common interferent (Arizona Test Dust). Future samples will include pollen and diesel exhaust. This paper presents the details of the apparatus along with the results of recent measurements.
Identification of aerosol type and chemical composition may help to trace their origin and estimate their impact on land and people. Aerosols chemical composition, size distribution and particles shape, manifest themselves in their spectral scattering cross-section. In order to make a reliable identification, comprehensive spectral analysis of aerosol scattering should be carried out. Usually, spectral LIDAR measurements of aerosols are most efficiently performed using an Nd:YAG laser transmitter in the fundamental frequency and its 2nd, 3rd and 4th harmonics. In this paper we describe automatic detection and identification of several aerosol types and size distributions, using a multi-spectral lidar system operating in the IR, NIR and UV spectral regions. The LIDAR transmitter is based on a single Nd:YAG laser. In addition to the 3rd and 4th harmonics in the UV, two optical parametric oscillator units produce the eye-safe 1.5 µm wavelength in the near IR and up to 40 separable spectral lines in the 8-11 µm IR. The combination of a wide spectral coverage required for backscattering analysis combined with fluorescence data, enable the generation of a large spectral data set for aerosols identification. Several natural and anthropogenic aerosol types were disseminated in controlled conditions, to test system capabilities. Reliable identification of transient and continuous phenomena demands fast and efficient control and detection algorithms. System performance, using the specially designed algorithms, is described below.
This paper describes and compares three different approaches to estimate simultaneous localization and mapping (SLAM) in dynamic outdoor environments. SLAM has been intensively researched in recent years in the field of robotics and intelligent vehicles, many approaches have been proposed including occupancy grid mapping method (Bayesian, Dempster-Shafer and Fuzzy Logic), Localization estimation method (edge or point features based direct scan matching techniques, probabilistic likelihood, EKF, particle filter). In this paper, a number of promising approaches and recent developments in this literature have been reviewed firstly in this paper. However, SLAM estimation in dynamic outdoor environments has been a difficult task since numerous moving objects exist which may cause bias in feature selection problem. In this paper, we proposed a possibilistic SLAM with RANSAC approach and implemented with three different matching algorithms. Real outdoor experimental result shows the effectiveness and efficiency of our approach.
At present, visual simultaneous localization and mapping is a hot topic in the field of unmanned systems, which is popular among academic workers because of its advantages of accurate localization, low cost, large amount of information, and wide range of applications, but it still has some problems, including the camera’s vulnerability to the number of feature points and the noise impact of the inertial measurement unit during uniform linear motion. In response to the above problem this paper carries out the research on multi-sensor fusion localization algorithm, the main work is as follows: Based on ORB-SLAM3, a visual-inertial-laser SLAM algorithm is designed. The relative motion of laser location between image frames is obtained from the data of 2D Lidar and laser height sensor. The relative motion of inertial measurement unit between image frames is obtained from inertial measurement unit preintegration. Based on the method of factor graph optimization, the pose of image frame is optimized by reprojection of map point, relative motion increment of inertial measurement unit, and relative motion increment of laser location. The algorithm improves the localization accuracy by about 24.4% over the ORB-SLAM3 visual mode and about 22.6% over the ORB-SLAM3 visual-inertial mode on the data of the UAV physical platform.
We investigate the use of multiple scattering via Multiple-Field-Of-View (MFOV) lidar signals to characterize bioaerosol particles size and concentration from ground based lidar over distances shorter than a few kilometers. The MFOV lidar signal is calculated for background aerosols at a wavelength 355 nm for a visibility of 30 km. The optical depths studied are small and the calculations are restricted to second order scattering. Also since background aerosols are constituted of relatively small particles which diffuse the light at large angles, the fields of view (FOV) range from 1 to 100 mrad full angle. We show that the MFOV lidar measurements contain exploitable information on particle size and extinction.
Standoff LIDAR detection of BW agents depends on accurate knowledge of the infrared and ultraviolet optical elastic scatter (ES) and ultraviolet fluorescence (UVF) signatures of bio-agents and interferents. MIT Lincoln Laboratory has developed the Standoff Aerosol Active Signature Testbed (SAAST) for measuring polarization-dependent ES cross sections from aerosol samples at all angles including 180° (direct backscatter) [1]. Measurements of interest include the dependence of the ES and UVF signatures on several spore production parameters including growth medium, sporulation protocol, washing protocol, fluidizing additives, and degree of aggregation. Using SAAST, we have made measurements of the polarization-dependent ES signature of Bacillus globigii (atropheaus, Bg) spores grown under different growth methods. We have also investigated one common interferent (Arizona Test Dust). Future samples will include pollen and diesel exhaust. This paper presents the details of the apparatus along with the results of recent measurements.
Identification of aerosol type and chemical composition may help to trace their origin and estimate their impact on land and people. Aerosols chemical composition, size distribution and particles shape, manifest themselves in their spectral scattering cross-section. In order to make a reliable identification, comprehensive spectral analysis of aerosol scattering should be carried out. Usually, spectral LIDAR measurements of aerosols are most efficiently performed using an Nd:YAG laser transmitter in the fundamental frequency and its 2nd, 3rd and 4th harmonics. In this paper we describe automatic detection and identification of several aerosol types and size distributions, using a multispectral lidar system operating in the IR, NIR and UV spectral regions. The LIDAR transmitter is based on a single Nd:YAG laser. In addition to the 3rd and 4th harmonics in the UV, two optical parametric oscillator units produce the eye-safe 1.5 μm wavelength in the near IR and up to 40 separable spectral lines in the 8-11 μm IR. The combination of a wide spectral coverage required for backscattering analysis combined with fluorescence data, enable the generation of a large spectral data set for aerosols identification. Several natural and anthropogenic aerosol types were disseminated in controlled conditions, to test system capabilities. Reliable identification of transient and continuous phenomena demands fast and efficient control and detection algorithms. System performance, using the specially designed algorithms, is described below.