Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Fractionally-quadratic transformations which reduce any two-dimensional quadratic system to the special Lienard equation are introduced. Existence criteria of cycles are obtained.
The existence criterion of three normal size limit cycles in quadratic systems with a weak focus of first order is obtained. Further, giving a finite disturbance for weak focus, the fourth normal size limit cycle is obtained. Bifurcation of appearance of two limit cycles via semistable cycle is given.
From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors.
At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which were devoted to constructing nested limit cycles in quadratic systems, that showed the necessity of studying hidden oscillations for solving this problem. Later, the problem of analyzing hidden oscillations arose from engineering problems in automatic control. In the 50–60s of the last century, the investigations of widely known Markus–Yamabe's, Aizerman's, and Kalman's conjectures on absolute stability have led to the finding of hidden oscillations in automatic control systems with a unique stable stationary point. In 1961, Gubar revealed a gap in Kapranov's work on phase locked-loops (PLL) and showed the possibility of the existence of hidden oscillations in PLL. At the end of the last century, the difficulties in analyzing hidden oscillations arose in simulations of drilling systems and aircraft's control systems (anti-windup) which caused crashes.
Further investigations on hidden oscillations were greatly encouraged by the present authors' discovery, in 2010 (for the first time), of chaotic hidden attractor in Chua's circuit.
This survey is dedicated to efficient analytical–numerical methods for the study of hidden oscillations. Here, an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods.
The relativistic Lagrangian in presence of potentials was formulated directly from the metric, with the classical Lagrangian shown embedded within it. Using it we formulated covariant equations of motion, a deformed Euler–Lagrange equation, and relativistic Hamiltonian mechanics. We also formulate a modified local Lorentz transformation, such that the metric at a point is invariant only under the transformation defined at that point, and derive the formulae for time-dilation, length contraction, and gravitational redshift. Then we compare our formulation under non-relativistic approximations to the conventional ad hoc formulation, and we briefly analyze the relativistic Liénard oscillator and the spacetime it implies.