Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    Future Prospects for Particle Therapy Accelerators

    Particle therapy is the expanding radiotherapy treatment option of choice for cancer. Its cost, however, is currently hindering its worldwide expansion. Also, the ideal application of particle therapy is restricted by a series of unsolved technical challenges. Both the cost and technical limitations are directly traceable to dependence on legacy accelerators and their associated treatment possibilities. This chapter is written to address these needs. Firstly, a technical overview is presented of photon and particle therapy for cancer tumours. Secondly, the underlying limitations of the existing legacy systems are identified, especially those related to accelerators, and suggestions are made for current and future developments to address these shortcomings. The legacy systems referred to here are of the slow scanning variety using large, circular accelerators.

    This paper also attempts to make a scientific comparison of the various types of accelerators currently used or being developed for particle therapy.

    The following procedure is pursued to perform a comparison between various types of accelerators:

    • The parameters which are pertinent to particle therapy accelerators (‘specified parameters’) are identified from clinical efficiency and overall cost considerations.
    • The range and values of ‘specified parameters’ associated with each type of particle therapy accelerator are identified.
    • A comparison is made on the best match between the various types of accelerators for each of the ‘specified parameters,’ i.e., the best in class accelerator, when compared to each criterion.
    • Based on this match, an overall conclusion is made on the type of accelerator which best fits the needs for particle therapy.

  • chapterNo Access

    Low Energy Accelerators for Cargo Inspection

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  • chapterNo Access

    High Frequency Linacs for Hadrontherapy

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: “paint” a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  • chapterNo Access

    Superconducting Hadron Linacs

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating-focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are taken from existing designs of continuous wave (CW) heavy ion linacs and high-intensity pulsed or CW proton linacs. Finally, we review ongoing R&D work toward high-power SC linacs for various applications.