Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In 1983 Conway and Gordon proved that any embedding of the complete graph K7 into ℝ3 contains at least one nontrivial knot as its Hamiltonian cycle. After their work knots (also links) are considered as intrinsic properties of abstract graphs, and numerous subsequent works have been continued until recently. In this paper, we are interested in knotted Hamiltonian cycles in linear embedding of K7. Concretely it is shown that any linear embedding of K7 contains at most three figure-8 knots.
We use the theory of oriented matroids to show that any linear embedding of K9, the complete graph on nine vertices, into 3-space contains a non-split link with three components. This shows that Sachs' conjecture on linear, linkless embeddings of graphs, whether true or false, does not extend to 3-links.
We show there exists a linear embedding of K3,3,1 with n nontrivial 2-component links if and only if n = 1, 2, 3, 4, or 5.