Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    k-Means Clustering with Optimal Centroid: An Optimization Insisted Model for Removing Outliers

    In data cleaning, the process of detecting and correcting corrupt, inaccurate or irrelevant records from the record set is a tedious task. Particularly, the process of “outlier detection” occupies a significant role in data cleaning that removes or eliminates the outlier’s that exist in data. Traditionally, more efforts have been taken to remove the outliers, and one of the promising ways is customizing clustering models. In this manner, this paper intends to propose a new outlier detection model via enhanced k-means with outlier removal (E-KMOR), which assigns all outliers into a group naturally during the clustering process. For assigning the point to be outliers, a new intra-cluster based distance evaluation is employed. The main contribution of this paper is to select cluster centroid optimally through a newly proposed hybrid optimization algorithm termed particle updated lion algorithm (PU-LA), which hybrids the concepts of LA and particle swarm optimization (PSO), respectively. Thereby, the proposed work is named as E-KMOR-PU-LA. Finally, the efficacy of the proposed E-KMOR-PU-LA model is proved through a comparative analysis over conventional models by concerning runtime and accuracy.

  • articleNo Access

    HEp-2 CELL CLASSIFICATION BY ADAPTIVE CONVOLUTIONAL LAYER BASED CONVOLUTIONAL NEURAL NETWORK

    Objective: The antinuclear antibodies (ANA) that present in the human serum have a link with various autoimmune diseases. Human Epithelial type-2 (HEp-2) cells acts as a substance in the Indirect Immuno fluorescence (IIF) test for diagnosing these autoimmune diseases. In recent times, the computer-aided diagnosis of autoimmune diseases by the HEp-2 cell classification has drawn more interest. Though, they often pose limitations like large intra-class and small inter-class variations. Hence, various efforts have been performed to automate the procedure of HEp-2 cell classification. To overcome these problems, this research work intends to propose a new HEp-2 classification process.

    Materials and Methods: This is regulated by integrating two processes, namely, segmentation and classification. Initially, the segmentation of the HEp-2 cells is carried out by deploying the morphological operations. In this paper, two morphology operations are deployed called opening and closing. Further, the classification process is exploited by proposing a modified Convolutional Neural Network (CNN). The main objective is to classify the HEp-2 cells effectively (Centromere, Golgi, Homogeneous, Nucleolar, NuMem, and Speckled) and is made by exploiting the optimization concept. This is implanted by developing a new algorithm called Distance Sorting Lion Algorithm (DSLA), which selects the optimal convolutional layer in CNN.

    Results: Through the performance analysis, the performance of the proposed model for test case 1 at learning percentage 60 is 3.84%, 1.79%, 6.22%, 1.69%, and 5.53% better than PSO, FF, GWO, WOA, and LA, respectively. At 80, the performance of the proposed model is 5.77%, 6.46%, 3.95%, 3.24%, and 5.55% better from PSO, FF, GWO, WOA, and LA, respectively. Hence, the performance of the proposed work is proved over other models under different measures.

    Conclusion: Finally, the performance is evaluated by comparing it with the other conventional algorithms in terms of accuracy, sensitivity, specificity, precision, FPR, FNR, NPV, MCC, F1-Score and FDR, and proves the efficacy of the proposed model.