In this paper, we expand on the remark by Andrews on the importance of infinite sums and products in combinatorics. Let {gd(n)}d≥0,n≥1{gd(n)}d≥0,n≥1 be the double sequences σd(n)=∑ℓ|nℓdσd(n)=∑ℓ|nℓd or ψd(n)=ndψd(n)=nd. We associate double sequences {pgd(n)}{pgd(n)} and {qgd(n)}{qgd(n)}, defined as the coefficients of
∞∑n=0pgd(n)tn:=∞∏n=1(1−tn)−∑ℓ|nμ(ℓ)gd(n/ℓ)n,∞∑n=0pgd(n)tn:=∞∏n=1(1−tn)−∑ℓ|nμ(ℓ)gd(n/ℓ)n,
∞∑n=0qgd(n)tn:=11−∑∞n=1gd(n)tn.∞∑n=0qgd(n)tn:=11−∑∞n=1gd(n)tn.
These coefficients are related to the number of partitions p(n)=pσ1(n)p(n)=pσ1(n), plane partitions pp(n)=pσ2(n)pp(n)=pσ2(n) of nn, and Fibonacci numbers F2n=qψ1(n)F2n=qψ1(n). Let n≥3n≥3 and let n≡0(mod3)n≡0(mod3). Then the coefficients are log-concave at nn for almost all dd in the exponential (involving pgdpgd) and geometric cases (involving qgdqgd). The coefficients are not log-concave for almost all dd in both cases, if n≡2(mod3)n≡2(mod3). Let n≡1(mod3)n≡1(mod3). Then the log-concave property flips for almost all dd.