Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Microwave Absorption Properties of Fe-Doped Ordered Mesoporous Carbon (CMK-3)/Silica Matrix Nanocomposites with Magnetic Multi-Resonance Mechanisms

    Nano23 Nov 2015

    Low-density Fe-doped ordered mesoporous carbon (CMK-3)-silica (SBA-15) nanocomposites with different Fe contents have been prepared by a catalytic carbonization procedure followed by high-temperature calcination in N2. From field emission-scanning electron microscope (FE-SEM) and high resolution-transmission electron microscope (HR-TEM) images, it can be concluded that CMK-3 particles are dispersed homogeneously into a silica matrix and form a novel, special and interesting composite nanostructure. The metal species (18nm) are dispersed on the surface of frameworks during the catalytic carbonization procedure and endow a magnetic property to the carbon–silica nanocomposites. The optimal reflection loss (RL) calculated from the measured permittivity and permeability is 19dB at 17.2GHz for an absorber thickness of 2.00mm. Moreover, the electromagnetic (EM) wave absorption less than 10dB is found to exceed 5.76GHz as the layer thickness is 2.37 mm. The permittivity dispersion behaviors have been explained based on the Cole–Cole model and the conductivity contribution model. A new simple empirical model was also supposed to find the fitted curves of the multi-resonance imaginary permeability spectra of the composites. The EM wave can hardly be reflected on the absorber surface because of a better match between dielectric loss and magnetic loss, which originates from the combination of dielectric carbon–silica and magnetic Fe species.