A reaction between 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin and 1-bromopyrene resulted in the formation of 5,10,15,20-tetra[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (1), while cross-condensation between 4-(4-(pyrenyl-1)butoxy)benzaldehyde, ferrocenecaboxaldehyde, and pyrrole resulted in the formation of 5-ferrocenyl-10,15,20-tri[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (2), 5,10-diferrocenyl-15,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (3), and 5,15-diferrocenyl-10,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (4). All pyrene-containing porphyrins were characterized by 1H NMR, UV-vis, MCD, and high-resolution ESI methods, while their electronic structures and the nature of the excited states were elucidated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The molecular structure of 1 and its fluorescence quenching upon the addition of C60 fullerene was also investigated using X-ray crystallography and steady-state fluorescence approaches.