Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The combination of 192Ir seed with the Leipzig applicators is used in a considerable number of clinical trials for skin cancer treatment. As is known, the beneficial effects of ionizing radiation for tumor treatment depends on the dosimetry accuracy. Nowadays, dosimetry calculations are supported by the characteristics provided by the manufacturer, which have been obtained from measurements with an ionization chamber in a phantom. Despite their benefit, the experimental data involves errors related to the positioning, energy, and angular dependence of the detectors. Thus, in order to get a detailed and more accurate dosimetry, the Monte Carlo code MCNP4C2 — Monte Carlo Neutron Particle, 4C2 version — has been employed to analyze the dose distribution in depth and at the surface in the skin cancer treatment using Leipzig applicators. On the other hand, some different measurements have been taken to validate the method and compare results. The results for this material of phantom (the skin with 0.5 cm thick over infinite soft tissue) can be used in treatment planning systems and also for computation of model dependent parameters like anisotropy dose function.
Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.