Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Two limit behaviours of a simple model of aerosol are considered. The only force acting on aerosol particles is a friction due to the flow of gas. It is first proved that in the limit of an infinite friction coefficient, the particles are simply advected by the gas. Then we consider very dilute sprays of aerosol, i.e. with distribution functions which are monokinetic (Dirac mass in velocity). This approach leads to a macroscopic system with a free-boundary problem.
We present partial differential equation (PDE) model hierarchies for the chemotactically driven motion of biological cells. Starting from stochastic differential models, we derive a kinetic formulation of cell motion coupled to diffusion equations for the chemoattractants. We also derive a fluid dynamic (macroscopic) Keller–Segel type chemotaxis model by scaling limit procedures. We review rigorous convergence results and discuss finite-time blow-up of Keller–Segel type systems. Finally, recently developed PDE-models for the motion of leukocytes in the presence of multiple chemoattractants and of the slime mold Dictyostelium Discoideum are reviewed.
We consider an Individual-Based Model for self-rotating particles interacting through local alignment and investigate its macroscopic limit. This model describes self-propelled particles moving in the plane and trying to synchronize their rotation motion with their neighbors. It combines the Kuramoto model of synchronization and the Vicsek model of swarm formation. We study the mean-field kinetic and hydrodynamic limits of this system within two different scalings. In the small angular velocity regime, the resulting model is a slight modification of the "Self-Organized Hydrodynamic" model which has been previously introduced by the first author. In the large angular velocity case, a new type of hydrodynamic model is obtained. A preliminary study of the linearized stability is proposed.
In this paper, we are interested in studying self-alignment mechanisms described as jump processes. In the dynamics proposed, active particles are moving at a constant speed and align with their neighbors at random times following a Poisson process. This dynamics can be viewed as an asynchronous version of the so-called Vicsek model. Starting from this particle dynamics, we introduce the related kinetic description and then derive a continuum hydrodynamic model. We then introduce different discretization strategies for the hierarchy of proposed models, we numerically study the convergence of the schemes and compare the behaviors of the different systems for several test cases.