The present article delves into some symplectic features arising in basic knot theory. An interpretation of the writhing number of a knot (with reference to a plane projection thereof) is provided in terms of a phase function analogous to those encountered in geometrical optics, its variation upon switching a crossing being akin to the passage through a caustic, yielding a knot theoretical analogue of Maslov's theory, via classical fluidodynamical helicity. The Maslov cycle is given by knots having exactly one double point, among those having a fixed plane shadow and lying on a semi-cone issued therefrom, which turn out to build up a Lagrangian submanifold of Brylinski's symplectic manifold of (mildly) singular knots. A Morse family (generating function) for this submanifold is determined and can be taken to be the Abelian Chern–Simons action plus a source term (knot insertion) appearing in the Jones–Witten theory. The relevance of the Bohr–Sommerfeld conditions arising in geometric quantization are investigated and a relationship with the Gauss linking number integral formula is also established, together with a novel derivation of the so-called Feynman–Onsager quantization condition. Furthermore, an additional Chern–Simons interpretation of the writhe of a braid is discussed and interpreted symplectically, also making contact with the Goldin–Menikoff–Sharp approach to vortices and anyons. Finally, a geometrical setting for the ground state wave functions arising in the theory of the Fractional Quantum Hall Effect is established.