Please login to be able to save your searches and receive alerts for new content matching your search criteria.
It is pointed out that the omission of the effects of the transition between quarkonia or the assumption that the transition between quarkonia is flavor-independent would result in the inconsistent results for the pseudoscalar meson nonet. It is emphasized that the mass relation of the non-ideal mixing meson nonets should incorporate the effects of the flavor-dependent transition between quarkonia. The new mass relations of a meson nonet are presented.
The experimental information indicates that for the ground pseudoscalar states, the omission of the transition amplitudes between quarkonia can result in the unreasonable result. It is believed that the mass of the pure glueball employed in the general form of the mass matrix is different from the mass predicted by lattice QCD in quenched approximation for the ground pseudoscalar glueball. The mass relation between the pure and physical ground pseudoscalar glueballs is determined from the experimental data.
The most fundamental to the elementary particles is the mass they possess and it would be of importance to explore a possible relationship amongst their masses. Here, an attempt is made to investigate this important aspect irrespective of their nature or scheme of classification. We show that there exists a striking tendency for successive mass differences between elementary particles to be close integral/half integral multiple of the mass difference between a neutral pion and a muon. Thus indicating discreteness in the nature of the mass occurring at the elementary particle level. Furthermore, this mass difference of 29.318 MeV is found to be common to the mass spectra of leptons and baryons, implying thereby existence of a basic mechanism linking elementary particles responding to different interactions.
Starting from the equations of motion of the fields in a theory with spontaneous symmetry breaking and by making some simple assumptions regarding their behavior we derive simple tree level relations between the mass of the Higgs boson in the theory and the masses of the gauge bosons corresponding to the broken generators. We show that these mass relations have a clear meaning if both the scalars and the gauge bosons in the theory are composite states made of two fermions.