Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Compendium on Electromagnetic Analysis
Compendium on Electromagnetic Analysis

(In 5 Volumes)
Editor-in-chief: Igor Tsukerman
Encyclopedia of Packaging Materials, Processes, and Mechanics
Encyclopedia of Packaging Materials, Processes, and Mechanics

(In 4 Volumes)
Editor-in-chief: Avram Bar-Cohen, Jeffrey C Suhling and Andrew A O Tay
Explosive Ferroelectric Generators
Explosive Ferroelectric Generators

From Physical Principles to Engineering
by Sergey I Shkuratov

 

  • articleNo Access

    A BIO-INSPIRED POLYDOPAMINE APPROACH TO PREPARATION OF GOLD-COATED Fe3O4 CORE–SHELL NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND MECHANISM

    Nano18 Nov 2013

    A biomimetic and facile approach for integrating Fe3O4 and Au with polydopamine (PDA) was proposed to construct gold-coated Fe3O4 nanoparticles (Fe3O4@Au–PDA) with a core–shell structure by coupling in situ reduction with a seed-mediated method in aqueous solution at room temperature. The morphology, structure and composition of the core–shell structured Fe3O4@Au–PDA nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The formation process of Au shell was assessed using a UV-Vis spectrophotometer. More importantly, according to investigating changes in PDA molecules by Fourier transform infrared spectroscopy (FTIR) and in preparation process of the zeta-potential data of nanoparticles, the mechanism of core–shell structure formation was proposed. Firstly, PDA-coated Fe3O4 are obtained using dopamine (DA) self-polymerization to form thin and surface-adherent PDA films onto the surface of a Fe3O4 "core". Then, Au seeds are attached on the surface of PDA-coated Fe3O4 via electrostatic interaction in order to serve as nucleation centers catalyzing the reduction of Au3+ to Au0 by the catechol groups in PDA. Accompanied by the deposition of Au, PDA films transfer from the surface of Fe3O4 to that of Au as stabilizing agent. In order to confirm the reasonableness of this mechanism, two verification experiments were conducted. The presence of PDA on the surface of Fe3O4@Au–PDA nanoparticles was confirmed by the finding that glycine or ethylenediamine could be grafted onto Fe3O4@Au–PDA nanoparticles through Schiff base reaction. In addition, Fe3O4@Au–DA nanoparticles, in which DA was substituted for PDA, were prepared using the same method as that for Fe3O4@Au–PDA nanoparticles and characterized by UV-Vis, TEM and FTIR. The results validated that DA possesses multiple functions of attaching Au seeds as well as acting as both reductant and stabilizing agent, the same functions as those of PDA.

  • articleNo Access

    Novel α-FeOOH Nanorods/Ag3PO4 Semiconductor Composites with Enhanced Photocatalytic Activity and Stability

    Nano01 Jun 2016

    The composite α-FeOOH nanorods/Ag3PO4 photocatalyst has been successfully fabricated through a facile hydrothermal process combined with a successive in situ precipitation technique. The SEM and TEM images show that Ag3PO4 particles have been successfully loaded on the surface of FeOOH nanorods. The photocatalytic activities of the α-FeOOH/Ag3PO4 composite were investigated for their efficiency on the degradation of Rhodamine B (RhB) under ultra-violet light and visible light irradiation, and the results showed that the α-FeOOH/Ag3PO4 composite possessed remarkable photocatalytic activities. The enhanced photocatalytic activity can be attributed to the strong absorption in visible light and the effective separation of photogenerated hole–electron pairs between Ag3PO4 and α-FeOOH.

  • articleNo Access

    Preparation of N-Doped Graphene by Hydrothermal Method and Interpretation of N-Doped Mechanism

    Nano01 Feb 2017

    Nitrogen-doped graphene (NG) was generated by hydrothermal method, using GO as the raw material and formamide as the reducing-doping source. The composite material was characterized by Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD) spectrum, X-ray photoelectron spectroscopy (XPS). The results showed that Nitrogen was successfully doped in the graphene. Through regulating the reaction temperature, time and the ratio of graphite oxide and formamide, the different nitrogen contents were obtained, the highest nitrogen content was 5.67%. NG was also synthesized by urea or ammonia, characterizing by XPS. The characterization results showed that for taking urea and ammonia as nitrogen source, pyrrolic-N was the main form of nitrogen existing, taking formamide as a nitrogen, pyridinic-N was the main form of nitrogen existing. Based on these experimental results by different nitrogen source, the N-doped graphene mechanism was interpreted.

  • articleNo Access

    Photocatalytic Activity of Reduced Graphene Oxide-SnSe Nanohybrids with Efficiency Interface Effect

    Nano01 Mar 2017

    Reduced graphene oxide-SnSe (rGO-SnSe) nanohybrids were synthesized with a solution chemical reaction at room temperature. The nanohybrids were characterized by various techniques for their microstructural and photocatalytic activities in photodegradation of alkaline dye malachite green in the water. The effects of rGO/SnSe ratio, initial solution pH, and H2O2 concentration on the photodegradation efficiency were studied. The SnSe nanocrystallines with nanoscale size and narrow bandgap were formed and uniformly adhered on the rGO surface. Raman analysis confirmed the reduction of GO. The experimental results indicated that the nanohybrids showed excellent sunlight-excited photocatalytic activity in degrading malachite green in the water. Significantly, the nanohybrids showed remarkable photo-Fenton-like catalytic activity. The photodegradation rates of the hybrids were greater than that of SnSe nanoparticles, increased with increasing rGO/SnSe ratio, and related to operation parameters. High photocatalytic activities were ascribed to the efficiency interface effect that was confirmed by the calculations of band energy level and photoconductivity. The TOC measurement further verified the photodegradation results. The nanoparticles and nanohybrids also showed excellent reusability.

  • articleNo Access

    Fabrication of Novel n-SrTiO3/p-BiOI Heterojunction for Degradation of Crystal Violet Under Simulated Solar Light Irradiation

    Nano01 Jun 2018

    Novel n-SrTiO3/p-BiOI heterojunction composites were successfully fabricated by loading SrTiO3 particles onto the surface of BiOI nanoflakes via a two-step method. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy-disperse X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS) and electrochemical measurements. The results show that the n-SrTiO3/p-BiOI heterojunction composites are composed of perovskite structure SrTiO3 and tetragonal phase BiOI. The composites exhibit excellent photocatalytic performance for the degradation of crystal violet (CV) solution under simulated solar light irradiation, which is superior to that of pristine BiOI and SrTiO3. The 30wt.%SrTiO3/BiOI composite is found to be the optimal composite, over which the dye degradation reaches 92.5% for 30min of photocatalysis. The photocatalytic activity of the 30wt.%SrTiO3/BiOI composite is found to be 3.94 times and 28.2 times higher than that of bare BiOI and SrTiO3, respectively. The reactive species trapping experiments suggest that O2 and holes are the main active species responsible for the CV degradation. In addition, the electrochemical measurements elucidate the effective separation of photoinduced electron–hole pairs. Moreover, on the basis of experimental and theoretical results, a possible mechanism for the enhanced photocatalytic performance of the SrTiO3/BiOI heterojunction composites is also proposed.

  • articleNo Access

    Experimental and Mechanism Investigation on Boiling Heat Transfer Characteristics of Alumina/Water Nanofluid on a Cylindrical Tube

    Nano01 Oct 2019

    Nucleate pool boiling heat transfer experiments have been conducted to nanofluids on a horizontal cylinder tube under atmospheric pressure. The nanofluids are prepared by dispersing Al2O3 nanoparticles into distilled water at concentrations of 0.001, 0.01, 0.1, 1 and 2wt.% with or without sodium, 4-dodecylbenzenesulfonate (SDBS). The experimental results showed that: nanofluids at lower concentrations (0.001wt.% to 1wt.%) can obviously enhance the pool boiling heat transfer performance, but signs of deterioration can be observed at higher concentration (2wt.%). The presence of SDBS can obviously enhance the pool boiling heat transfer performance, and with the presence of SDBS, a maximum enhancement ratio of BHTC of 69.88%, and a maximum decrease ratio of super heat of 41.12% can be found in Group NS5 and NS4, respectively. The tube diameter and wall thickness of heating surface are the influential factors for boiling heat transfer coefficient. Besides, we find that Rohsenow formula failed to predict the characteristics of nanofluids. The mechanism study shows that: the decrease of surface tension, which leads to the decrease of bubble departure diameter, and the presence of agglomerates in nanofluids are the reasons for the enhanced pool boiling heat transfer performance. At higher concentration, particle deposition will lead to the decrease of distribution density of the vaporization core, and as a result of that, the boiling heat transfer performance will deteriorate.

  • articleNo Access

    A Ratiometric Fluorescent Probe Based on Carbon Dots and Bimetallic Nanoclusters for the Assay of Copper Gluconate and Copper Sulfate

    Nano01 Sep 2021

    Doping Ag-enhanced and glutathione-stabilized Au nanoclusters (GSH–Ag/AuNCs) were prepared by the one-step ultraviolet radiation combined with microwave heating method. The effects of the molar ratio of Au–Ag and different types of energy suppliers on the fluorescent performance of GSH–Ag/AuNCs were studied in detail. After that, a new ratio fluorescent probe (RF-probe) based on the mixing of GSH–Ag/AuNCs with carbon dots (CDs) was designed for sensitive and selective determination of copper gluconate (CG) and cupric sulfate (CS). For the CDs–GSH–Ag/AuNCs RF-probe, the fluorescence (FL) of CDs (at 440nm) and that of alloy nanoclusters (NCs) (at 605nm) were, respectively, unaffected and strongly quenched in the presence of CG/CS at λex=370nm coming from the dynamic quenching process. Corresponding linear ranges and limit of detection (LOD) of the RF-probe for the CG/CS assay were estimated to be 0.17–6.20/0.17–5.62μmol/L and 16.80/15.95nmol/L, respectively. Furthermore, the proposed RF-probe was successfully used for the assays of CG in CG tablets and CG additive, and CS in infant formula and CS additive, respectively.

  • articleNo Access

    Nanoarchitectonics of AgBr/4A Zeolite Composites with Enhanced Photocatalytic Properties Under Visible Light

    Nano01 Feb 2022

    AgBr/zeolite photocatalysts with different mass ratios were synthesized by depositing AgBr on the surface of 4A zeolite via the one-step precipitation method. AgBr/zeolite with mass ratios of 1:1 exhibited the highest photocatalytic activity, resulting in the complete degradation of the methyl orange (MO) dye under visible-light irradiation for 30min. The photocatalysts were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The AgBr particles around 4A zeolite were smaller than pure AgBr. The specific surface area of 1:1 AgBr/zeolite was much larger than that of pure AgBr, which indicates that 1:1 AgBr/zeolite possessed more active sites. The photocatalytic stability of 1:1 AgBr/zeolite was investigated, and MO degradation rate of 90.4% was achieved after five cycling runs. The trapping experiments showed that hydroxyl radical (OH), superoxide radical (O2), and hole (h+) were the reactive species responsible for removing MO, and h+ played a key role in MO removal. A possible reaction mechanism in AgBr/zeolite photocatalytic system for MO degradation was proposed.

  • chapterNo Access

    JUMPING VIA ROBOT BODY DEFORMATION - MECHANICS AND MECHANISM FOR HIGHER JUMPING

    As jumping is an effective method of moving over rough terrain, there is much interest in building robots that can jump. Deformation of a soft robot's body is an effective method to induce jumping. Our aim was to develop a jumping robot by deformation of a circular shell made of spring steel to result in the highest jump. Higher jumping requires enlargement of the contact area between the robot body and the floor. We developed a jumping mechanism that utilized a dish shape to maximize contact area.

  • chapterNo Access

    INTELLIGENT SENSOR USED FOR MERO MODULAR WALKING ROBOTS MOVING ON UNDEVELOPED TERRAIN

    One of the central problems of motion control of walking robots is the distribution of force between legs and the organization of robot motion within margins of static stability. Support reactions need to be controlled during movements on undeveloped terrain. The force/torque sensor is an important component of the measuring system and force control and sliding contact with the ground uneven leg of the modular walking robot MERO. Determination of the real forces distribution in the shifting mechanisms of a walking locomotion system which moves in undeveloped terrain at low speed is necessary for the analysis of stability. The paper will analyze an intelligent sensor developed by the authors with an important role in the complex system control slipping when moving walking robot MERO on undeveloped terrain.

  • chapterNo Access

    Research on the production process of oak barrels for rum aging

    It aims at improving the manufacture of American white Oak barrel in order to better serve the Rum industry in Guaungxi Zhuang Autonomous Region. This paper also makes a comprehensive introduction of the barrel production technique at home and abroad. From the respects of the selecting of the raw material for the barrel, wood splitting and truncation, barrel web fixed length machine and barrel web of arc surface processing, machining Oak barrels type stave, assembly and the hoop frame, bake, steel processing and riveting hoop, pre cooper, processing of double end barrels of the top slot, cover processing and installation, Oak barrels sanding, the final Cooper, sealability, the key points of process packaging and transportation. What's more, there is a comparison of ageing in Oak barrels of Rum and Wine production process.

  • chapterNo Access

    Study on the effects and mechanism on rum aging by microwaving oak barrels

    In the aging RUM aging process, treated the external appearance of oak barrels using microwave to make the weak cell tissue slightly rupture to rich the microporous of the inner wall of the oak barrels and prevent the blockage of the aging process, this treatment is conducive to the RUM aging. In the aging process, conducted a microwave treatment for oak barrel, measured monthly the changes of phenol, alcohols, aldehydes, acids, esters, conductivity, oxidation-reduction potential, dissolved oxygen and pH value of the RUM, thus analyze the effect of aging process on RUM after microwave treatment to inference oxidation and esterification rate and analyze the influence of the oak barrels pore changes on micro oxygen exchange after microwave treatment. Through exploring the mechanism of microwave affecting RUM aging , it improves the quality of RUM aging and speeds up the aging process.