Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The aim of long-term mine planning (LTMP) is two-fold: to maximize the net present value of profits (NPV) and determine how ores are sequentially processed over the lifetime. This scheduling task is computationally complex as it is rife with variables, constraints, periods, uncertainties, and unique operations. In this paper, we present trends in the literature in the recent decade. One trend is the shift from deterministic toward stochastic problems as they reflect real-world complexities. A complexity of growing concern is also in sustainable mine planning. Another trend is the shift from traditional operational research solutions — relying on exact or (meta) heuristic methods — toward hybrid methods. They are compared through the scope of the problem formulation and discussed via solution quality, efficiency, and gaps. We finally conclude with opportunities to incorporate artificial intelligence (AI)-based methods due to paucity, multiple operational uncertainties simultaneously, sustainability indicator quantification, and benchmark instances.
In this paper the performance of the Cultural Algorithms-Iterated Local Search (CA-ILS), a new continuous optimization algorithm, is empirically studied on multimodal test functions proposed in the Special Session on Real-Parameter Optimization of the 2005 Congress on Evolutionary Computation. It is compared with state-of-the-art methods attending the Session to find out whether the algorithm is effective in solving difficult problems. The test results show that CA-ILS may be a competitive method, at least in the tested problems. The results also reveal the classes of problems where CA-ILS can work well and/or not well.
The firefly algorithm and cuckoo search are the meta-heuristic algorithms efficient to determine the solution for the searching and optimization problems. The current work proposes an integrated concept of quantum-inspired firefly algorithm with cuckoo search (IQFACS) that adapts both algorithms’ expedient attributes to optimize the solution set. In the IQFACS algorithm, the quantum-inspired firefly algorithm (QFA) ensures the diversification of fireflies-based generated solution set using the superstitions quantum states of the quantum computing concept. The cuckoo search (CS) algorithm uses the Lévy flight attribute to escape the QFA from the premature convergence and stagnation stage more effectively than the quantum principles. Here, the proposed algorithm is applied for the application of optimal path planning. Before using the proposed algorithm for path planning, the algorithm is tested on different optimization benchmark functions to determine the efficacy of the proposed IQFACS algorithm than the firefly algorithm (FA), CS, and hybrid FA and CS algorithm. Using the proposed IQFACS algorithm, path planning is performed on the satellite images with vegetation as the focused region. These satellite images are captured from Google Earth and belong to the different areas of India. Here, satellite images are converted into morphologically processed binary images and considered as maps for path planning. The path planning process is also executed with the FA, CS, and QFA algorithms. The performance of the proposed algorithm and other algorithms are accessed with the evaluation of simulation time and the number of cycles to attain the shortest path from defined source to destination. The error rate measure is also incorporated to analyze the overall performance of the proposed IQFACS algorithm over the other algorithms.
In recent years, the increasing human–computer interaction has spurred the interest of researchers towards facial expression recognition to determine the expressive changes in human beings. The detection of relevant features that describe the expressions of different individuals is vital to describe human expressions accurately. The present work has employed the integrated concept of Local Binary Pattern and Histogram of Gradient for facial feature extraction. The major contribution of the paper is the optimization of the extracted features using quantum-inspired meta-heuristic algorithms of QGA (Quantum-Inspired Genetic Algorithm), QGSA (Quantum-Inspired Gravitational Search Algorithm), QPSO (Quantum-Inspired Particle Swarm Optimization), and QFA (Quantum-Inspired Firefly Algorithm). These quantum-inspired meta-heuristic algorithms utilize the attributes of quantum computing that ensure the adequate control of facial feature diversity with quantum measures and Q-bit superstition states. The optimized features are fed to the deep learning (DL) variant deep convolutional neural network added with residual blocks (DCNN-R) for the classification of expressions. The facial expressions are detected for the KDEF and RaFD datasets under varying yaw angles of –90∘, –45∘, 0∘, 45∘, and 90∘. The detection of facial expressions with varying angles is also a crucial contribution, as the features decrease with the increasing yaw angle movement of the face. The experimental evaluations demonstrate the superior performance of the QFA than other algorithms for feature optimization and hence the better classification of facial expressions.
Electronic mails (emails) have been widely adapted by organizations and individuals as efficient communication means. Despite the pervasiveness of alternate means like social networks, mobile SMS, electronic messages, etc. email users are continuously growing. The higher user growth attracts more spammers who send unsolicited emails to anonymous users. These spam emails may contain malware, misleading information, phishing links, etc. that can imperil the privacy of benign users. The paper proposes a self-adaptive hybrid algorithm of big bang–big crunch (BB–BC) with ant colony optimization (ACO) for email spam detection. The BB–BC algorithm is based on the physics-inspired evolution theory of the universe, and the collective interaction behavior of ants is the inspiration for the ACO algorithm. Here, the ant miner plus (AMP) variant of the ACO algorithm is adapted, a data mining variant efficient for the classification. The proposed hybrid algorithm (HB3C-AMP) adapts the attributes of B3C (BB–BC) for local exploitation and AMP for global exploration. It evaluates the center of mass along with the consideration of pheromone value evaluated by the best ants to detect email spam efficiently. The experiments for the proposed HB3C-AMP algorithm are conducted with the Ling Spam and CSDMC2010 datasets. Different experiments are conducted to determine the significance of the pre-processing modules, iterations, and population size on the proposed algorithm. The results are also evaluated for the AM (ant miner), AM2 (ant miner2), AM3 (ant miner3), and AMP algorithms. The performance comparison demonstrates that the proposed HB3C-AMP algorithm is superior to the other techniques.
Online social media has made the process of disseminating news so quick that people have shifted their way of accessing news from traditional journalism and press to online social media sources. The rapid rotation of news on social media makes it challenging to evaluate its reliability. Fake news not only erodes public trust but also subverts their opinions. An intelligent automated system is required to detect fake news as there is a tenuous difference between fake and real news. This paper proposes an intelligent gravitational search random forest (IGSRF) algorithm to be employed to detect fake news. The IGSRF algorithm amalgamates the Intelligent Gravitational Search Algorithm (IGSA) and the Random Forest (RF) algorithm. The IGSA is an improved intelligent variant of the classical gravitational search algorithm (GSA) that adds information about the best and worst gravitational mass agents in order to retain the exploitation ability of agents at later iterations and thus avoid the trapping of the classical GSA in local optimum. In the proposed IGSRF algorithm, all the intelligent mass agents determine the solution by generating decision trees (DT) with a random subset of attributes following the hypothesis of random forest. The mass agents generate the collection of solutions from solution space using random proportional rules. The comprehensive prediction to decide the class of news (fake or real) is determined by all the agents following the attributes of random forest. The performance of the proposed algorithm is determined for the FakeNewsNet dataset, which has sub-categories of BuzzFeed and PolitiFact news categories. To analyze the effectiveness of the proposed algorithm, the results are also evaluated with decision tree and random forest algorithms. The proposed IGSRF algorithm has attained superlative results compared to the DT, RF and state-of-the-art techniques.
This paper proposes a novel optimization approach of the quantum-behaved binary firefly algorithm with a gravitational search algorithm (QBFA-GSA) for discrete feature optimization, which is utilized for the application of human activity recognition. The firefly algorithm (FA) and gravitational search algorithm (GSA) are recently introduced meta-heuristic algorithms that are efficient for optimizing the continuous solution set. The binarized version of the proposed approach enables it to optimize the discrete features and quantum behavior ensures the better diversity of the final optimized features. In the proposed QBFA-GSA approach, the features are optimized by following the combined advantageous attributes of FA and GSA in which the search space is initially explored by firefly agents until the current firefly finds the brighter firefly and further these agents adapt the attributes of GSA to complete the process. These optimized features are passed to deep neural networks (DNN) for the classification of human activities. Here, DNN models of deep convolutional neural networks (DCNN) and DCNN extended with residual blocks (DCNN-RB) are incorporated. The evaluation experiments for human activity recognition are conducted on a benchmark dataset of UCF-101, which is a composition of 101 different activities. The experimental results of the proposed QBFA-GSA approach are superlative to state-of-art techniques, which indicate that the proposed approach is efficient to optimize the features.
In the distributed data-intensive computing environment, securely assigning tasks to appropriate machines is a big job scheduling problem. The complexity of this problem increases with the number of jobs and their job times. Several meta-heuristic algorithms including particle swarm optimization (PSO) technique and variable neighborhood particle swarm optimization (VNPSO) technique are employed to solve the problem to a certain extent. This paper proposes a modified PSO with scout adaptation (MPSO-SA) algorithm, which uses a cyclic term called mutation operator, to solve the job scheduling problem in the cloud environment. The comparative study between the proposed MPSO-SA scheduling mechanism and the conventional scheduling algorithms show that the proposed method decreases the probability of security risk on scheduling the jobs.
The vicinagearth security technology system covers a wide range of fields such as low-altitude security, underwater security, and cross-domain security. Among them, unmanned aerial vehicle (UAV) security will become one of the evolving forms of its security technology, and how to improve the segmentation and recognition ability of UAV visual reconnaissance system for maritime targets through improvement will become the key to low-altitude security. Due to the fact that maritime target images are characterized by complex weather, strong interference, high speed requirement and large data volume, the traditional segmentation methods are not suitable for maritime small-target (MST) segmentation and recognition. Therefore, this paper proposes a threshold image segmentation (TIS) method based on an improved pigeon-inspired optimization (PIO) algorithm to provide a better method for segmentation and recognition of MST. First, this study proposes CCPIO based on the horizontal crossover search (HCS) and vertical crossover search (VCS) strategy, which effectively improves the search efficiency of PIO and the ability to jump out of local optimum. And the optimization performance of CCPIO is effectively verified by comparing it with 10 peer algorithms through benchmark function experiments. Further, in this paper, the proposed CCPIO-TIS segmentation model is proposed by combining CCPIO with non-local means, 2D histogram, and Kapur’s entropy. The proposed CCPIO-TIS model is also used for the segmentation and recognition of real MST images, and the results of the experimental comparison and evaluation analysis show that the proposed model has higher quality segmentation results than 12 models of the same type. In summary, this study can provide an efficient and accurate artificial intelligence model for segmentation and recognition of maritime small-target.
An adaptive multi-agent ACO clustering algorithm is proposed in this paper to enhance the efficiency and quality of ant based clustering. The algorithm includes three levels: Level-0 agents build solutions, level-1 agents improve solutions and level-2 agents update pheromone matrix. The updated pheromone then provides feedback information for the next iteration of solution construction. Mutation probability and pheromone resistance are the adaptive parameters, which can be adjusted automatically during the evolution progress to solve the contradiction between convergence speed and precocity and stagnation. Experimental results show that the proposed algorithm is more effective compared with the clustering algorithm based on GA and k-means, and the clustering quality and efficiency are promising.
This work focuses on the multi-objective scheduling of reentrant lines. Three algorithms are tested : our Lorenz - Non dominated Sorting Algorithm (L-NSGA), the Strength Pareto Evolution Algorithm 2 (SPEA2) and the Multi-Objective Ant Colony System (MOACS). Numerous experiments on various configurations of the system are made and finally their efficiency are ordered following two measures.
Software testing is one of the important and crucial phases of software development life cycle. In context of time, cost and effective testing the prime need is test case optimization. In present testing scenario the meta-heuristic methods are used for optimization problem and also provide good optimized result. The most popular algorithm used meta-heuristic software optimizations are genetic algorithm, particle swarm optimization, artificial bee colony, ant colony, memetic algorithm, harmony search and many more. In this paper we provide the comparative study of all metaheuristic approaches and find which is more towards the solutions i.e. coverage of requirement (fault coverage) and also take less time (cost) for test case execution and support software quality.