Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    TRAPPED PHONON IN ACOUSTIC METAMATERIAL

    We derive an analytic expression for the Goos–Hänchen shift experienced by an acoustic wave that is totally reflected at the interface between a negative-refractive-index acoustic medium and a positive-index acoustic medium. Upon obtaining the condition necessary for phonon-trapping in a three-layer heterostructure, we introduce a design for an "acoustic clepsydra" by using a suitable acoustic heterostructure.

  • articleNo Access

    MODELING AND ANALYSIS OF A NOVEL MICROWAVE SENSOR BASED ON WAVEGUIDE FILLING WITH A METAMATERIAL PARTICLE

    A novel microwave sensor based on waveguide filled with a metamaterial particle, which is composed of meander line and split-ring-resonator (SRR), is presented and modeled using a full wave electromagnetic commercial simulator CST. Simulating results show that evanescent mode are enhanced and transmitted through the structured particle within the frequency band that exhibits negative permittivity and permeability. Evanescent mode is sensitive to permittivity of dielectric material in the detecting zone. Comparing with conventional microwave resonant sensor, the microwave sensor using evanescent mode allows for much higher detection sensitivity.

  • articleNo Access

    AN EXTERNAL CYLINDRICAL CLOAK WITH N-SIDED REGULAR POLYGONAL CROSS-SECTION BASED ON COMPLEMENTARY MEDIUM

    An electromagnetic cloak is a device which makes an object "invisible" for electromagnetic irradiation in a certain frequency range. Material parameters for the complementary medium-assisted external cylindrical cloak with N-sided regular polygonal cross-section are derived based on combining the concepts of complementary media and transformation optics. It can make the object with an arbitrary shape outside the cloaking domain invisible, as long as an "anti-object" is embedded in the complementary layer. The external cloaking effect has been verified by full-wave simulation.

  • articleNo Access

    SEISMIC WAVEGUIDE OF METAMATERIALS

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  • articleNo Access

    Experimental observation of heat wave cloak

    According to the heat conduction theory and effective medium theory, we fabricated a six-layer cylinder heat diffusion cloak by mixing heat conduction materials. We measured the time-dependant heat wave at the iso-temperature lines and the heat flux lines with a self-made heat wave device. The experiment results show that the iso-temperature lines are parallel outside the outer circle, the heat fluxes are parallel and equal outside the outer circle, and the heat fluxes in the inner circle are much smaller than those outside the outer circle, namely, the heat fluxes are guided outside the cloaking region.

  • articleNo Access

    Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band

    In this study, a dynamic chiral metamaterial (MTM) structure leading to an asymmetric electromagnetic (EM) wave transmission for linear polarization is presented. The structure is composed of square-shaped resonator with gaps on both sides of a dielectric substrate with a certain degree of rotation. The dynamic structure is adjustable via various parameters to fit any desired frequency ranges. Theoretical and experimental analysis of the proposed structure are conducted and given in detail. The suggested model can provide constant chirality over a certain frequency band and thus, it can be used to design myriad novel devices such as EM transmission and antireflection filters, and polarization rotators for desired frequency regimes.

  • articleNo Access

    New generation planar chiral metamaterials with small and constant chirality over a certain frequency band

    Chiral metamaterial (MTM) researchers generally concentrate and aim to obtain large chirality with optical activity in certain frequencies. However, new generation planar chiral MTM which have small and constant/flat chirality over a certain frequency band have not queried by this time in literature. In fact, this area is mostly ignored by researchers. This study, first one according to best of our knowledge in the literature, is investigating the small and constant/fixed chirality and focuses on the new generation planar chiral MTM based on circular split ring resonators (SRRs), in details. It can be seen from the results that the proposed model can provide small and constant/flat chirality over a certain frequency band and thus it can be used to design myriad novel devices such as polarization rotators, and electromagnetic transmission and antireflection filters for several frequency regions.

  • articleNo Access

    A broadband planar THz metamaterial absorber

    We propose the design of a broadband planar metamaterial absorber (MA) at terahertz frequencies. The unit cell of the MA is composed of four dual-band sub-cells with different dimensions in a coplanar. The four dual-band sub-cell structures resonate at several neighboring frequencies. The absorber consists of two metallic layers separated by a dielectric spacer. Simulation results show that the metamaterial absorption at normal incidence is above 90% in the frequency of 6.56–8.10 THz. This design provides an effective way to construct broadband absorber. The multiple-reflection theory was used to explain the absorption mechanism of our investigated structures. The coupling of adjacent four dual-band sub-cells can introduce additional capacitance to affect the performance of absorber.

  • articleNo Access

    Feedback magnetization of ultra-low index irradiative structure

    Ultra-low refractive index irradiative structure is considered. The structure consists of a patch antenna with the metamaterial slab located on top of the antenna, as superstrate. In this study, ultra-low index phenomenon of the irradiative system is associated with improving the directivity of the patch antenna by putting the metamaterial slab on top of the antenna. The last phenomenon, in turn, is associated with the feedback partial magnetization of Iron inclusions of the slab caused by the radiation from the antenna. Mathematical model for evaluating the complex effective relative permittivity of the irradiative structure is developed. Numerical calculations for complex effective relative permittivity of the irradiative structure and real part of the complex effective relative permeability of the metamaterial slab are done in the study.

  • articleNo Access

    Tunable and switchable resonance in optically-controlled nested metamaterials at terahertz frequencies

    The asymmetrical nested metamaterial, composed of two split-ring resonators (SRRs) and two embedded gallium arsenide (GaAs) islands placed in the two SRRs, has been elaborately designed on quartz substrate. Its tunable and switchable resonances at terahertz (THz) frequencies are numerically demonstrated here based on different conductivities of GaAs, which can be transformed from semiconductor to metallic state through appropriate optical excitation. Without photoexcitation, our designed metamaterial has three resonance peaks in the range of monitored frequency range, and they are located at 0.813, 1.269 and 1.722 THz, respectively. As the conductivity of the two GaAs islands increases, different new resonances appear and constantly strengthen. Finally, four new resonant points are generated, at 0.432, 0.948, 1.578 and 1.875 THz, respectively. At the same time, the metamaterial structure is changed from the original nested mode to a new integral mode. Applying reversible changing conductivity of semiconductor to push the conversion of resonance, this asymmetrical nested design provides a new instance in application and development of additional THz devices.

  • articleNo Access

    Dual-band bandpass filter using composite metamaterial resonator

    A dual-band bandpass filter at X-band is proposed using composite metamaterial resonator consisting of an outer square closed-ring resonator (SCRR) and two inner electric inductance–capacitance (ELC) resonators. Numerical simulation and microwave measurement reveal that the filter exhibits two passbands centered at 8.76 GHz and 11.04 GHz, with 3 dB bandwidths of 130 MHz and 290 MHz, respectively. The complex dispersion relation of the filter is further derived based on the effective medium theory, where two balanced composite right-/left-handed bands are found, i.e. lines exhibiting two left-handed and two right-handed bands alternating. The proposed filter may find useful in dual-band or multi-band wireless communication systems.

  • articleNo Access

    Multi-band polarization independent cylindrical metamaterial absorber and sensor application

    A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, respectively. The numerical studies verify that the proposed model can provide multi-band perfect absorptions at wide polarization and incident angles due to its rotational symmetry feature. We have also realized sensor and parametric study applications in order to show additional features of the suggested model. The suggested MA enables myriad potential applications in medical technologies, sensors and in defense industry etc.

  • articleNo Access

    New generation chiral metamaterials with small and flat chirality over a certain frequency band based on circular split ring resonators for microwave filter applications

    There are many studies in literature on chiral metamaterials (MTMs) to obtain large chiralities with dynamic optical activities. With this regard, this new generation planar chiral MTM study focuses on a small, non-dispersive (constant/flat) chirality admittance over an indicated frequency band which has not been investigated so far in literature. This new generation planar chiral MTM provides a small and a constant/fixed chirality which is mostly ignored by the scientists. This study numerically and experimentally investigates and examines these new generation MTMs based on circular split ring resonators (SRRs) with an increased capacitance in details. Obtained results show that the suggested structure can provide a small and constant/flat chirality admittance over a certain frequency band and hence it can be used to design myriad novel electromagnetic (EM) devices such as transmission and antireflection filters, polarization rotators for any desired frequency regions.

  • articleNo Access

    Perfect metamaterial absorbers with polarization angle independency in X-band waveguide

    The design and characterization of perfect metamaterial absorbers (MAs) based on simple configurations including square- and triangle-shapes, which operate in X-band frequency region are numerically and experimentally investigated. The proposed MAs provide perfect absorption with the polarization angle independency. In X-band waveguide, the absorption rates are 99.69% and 99.97% at the resonance frequencies of 10.57 GHz and 10.93 GHz for the square- and triangle-shaped MAs, respectively. In addition, the same configurations are numerically tested under free space boundary conditions to compare and discuss the obtained results. The suggested MAs enable myriad potential application areas for security and stealth technologies in X-band including wireless communication.

  • articleNo Access

    Design of layered structure for thermal cloak with complex shape

    Thermal cloaks have potential applications in thermal protection and sensing, and those cloaks with complex shapes are much more efficient in application. Layered discretization is a valid way to realize thermal cloaks designed through spatial transformation which are usually nonhomogeneous and anisotropic. However, previous studies are limited to two-dimensional cylindrical ones. Based on the theories of spatial transformation and effective medium, a four-step design method for layered structure of thermal cloak with complex shape is proposed. It is expected to realize the designed layered structure by utilizing the existing regular materials. According to the numerical simulations, the thermal cloaking performances of layered structures are good and close to that of the perfect thermal cloaks. This study has provided an effective way for realizing thermal cloak with complex shape.

  • articleNo Access

    Design and experimental verification of a perfect dual-band optical metamaterial absorber

    A perfect dual-band optical absorber is designed and measured. A low absorption peak (P1) and two high absorption peaks (P2 and P3) are obtained. The P1 peak is excited by the resonance of internal surface plasmon (ISP) mode. The P2 peak is resulted by the coupling of local surface plasma (LSP) modes and the resonance of ISP mode. The P3 peak is excited by the resonance of ISP mode. The damping constant of the gold film is optimization calculated in simulations. Measured results indicate that high absorption performed is obtained with different dielectric layers. The measured metamaterial absorber displays high absorption performed at TM and TE configurations. Moreover, the proposed metamaterial absorber is sensitivity on the change of the refractive index of the environmental media.

  • articleNo Access

    Single- and double-sided sensor applications of metamaterials based on square-ring and diamond resonators for terahertz region

    This study investigates the sensing applications of metamaterial (MTM) structures in the terahertz (THz) region and is based on a broadside-coupled diamond and square-ring resonator (DSRR) structures. The resonators are designed and simulated as sensors in detail. Compared with single-sided sensors, the sensing capability of double-sided sensors provide an enhancement with respect to the sensitivity. To analyze the structure as sensor, the changes in the transmission resonance are investigated as a function of the permittivity and thickness of overlayer for the single- and double-sided MTM. The results demonstrate that this design can provide good sensitivity when sensing the chemical or biological agents that are resonant in the terahertz region of the electromagnetic spectrum. These types of designs can be employed in the many sensing applications that are of interest in the THz region.

  • articleNo Access

    An indium tin oxide metasurface filter for terahertz applications: Design, fabrication, and characterization

    In this paper, using a cross-shaped complementary Indium Tin Oxide (ITO)-based metasurface design, the transmission of THz radiation is shown to be filtered within the 3 dB level from maximum in the frequency range of interest (333 GHz). Various metasurface structures primarily composed of cross-shaped openings with a 400 micron unit cell size are patterned on top of 1750 micron thick fused silica substrates. They are patterned using UV lithography methods after the films were grown using DC sputtering. The fabricated structures were characterized using Terahertz Time Domain Spectroscopy (THz-TDS) measurement technique. The measured transmission agrees well with the simulation of the structure for four different samples with different geometries. These results suggest that metasurface and/or metamaterial patterns based on ITO in visibly transparent media can be utilized for filtering of frequencies in the long wavelength spectrum. These types of filters can be very useful in the near future for THz communication and security applications.

  • articleNo Access

    Implementation of a perfect metamaterial absorber into multi-functional sensor applications

    Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA-based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested sensor achieves good sensing capabilities for both applications. The proposed perfect MA-based sensor variations enable many potential applications in medical or food technologies.

  • articleNo Access

    A single-patterned five-band terahertz metamaterial absorber based on multiple resonance mechanisms

    A single-patterned five-band terahertz metamaterial absorber based on simple metal–dielectric–metal sandwich structure is investigated and demonstrated. The numerical simulations reveal the different dependence of the absorption ability on the incident polarization angle, dielectric layer, and structural dimensions of the single pattern. The extracted electric field distribution indicates that the five-band near-perfect absorption performance (average over 98%) mainly originates from the combination of LC, dipole, quadrupole, and high-order resonance. The researches on magnetic field and power loss density distributions further reveal the absorption mechanism. Moreover, additional resonance mode can be excited to form a six-band high-performance absorber only by adjusting some geometric dimensions of the single pattern with multiple resonance modes. The simple method provides us a very good idea to implement a super multi-band absorber. The proposed absorbers here can be applied in massive related fields, such as metamaterial sensors, thermal radiation, and imaging system.