Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleFree Access

    A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine

    TECHNOLOGY01 Dec 2017

    As a biomaterial, collagen has been used throughout tissue engineering and regenerative medicine. Collagen is native to the body, is highly biocompatible, and naturally promotes cell adhesion and regeneration. However, collagen fibers and the inherent weak mechanical properties of collagen hydrogels interfere with further development of collagen as a bio-ink. Herein, we demonstrate the use of a modified type-I collagen, collagen methacrylamide (CMA), as a fibril-forming bio-ink for free-form fabrication of scaffolds. Like collagen, CMA can self-assemble into a fibrillar hydrogel at physiological conditions. In contrast, CMA is photocrosslinkable and thermoreversible, and photocrosslinking eliminates thermoreversibility. Free-form fabrication of CMA was performed through self-assembly of the CMA hydrogel, photocrosslinking the structure of interest using a photomask, and cooling the entire hydrogel, which results in cold-melting of unphotocrosslinked regions. Printed hydrogels had a resolution on the order of 350μm, and can be fabricated with or without cells and maintain viability or be further processed into freeze-dried sponges, all while retaining pattern fidelity. A subcutaneous implant study confirmed the biocompatibility of CMA in comparison to collagen. Free-form fabrication of CMA allows for printing of macroscale, customized scaffolds with good pattern fidelity and can be implemented with relative ease for continued research and development of collagen-based scaffolds in tissue engineering.

  • chapterNo Access

    21: Methacrylated Natural Macromolecules as Precursors of Hydrogels for Biomedical Applications

    Natural methacrylate polysaccharides and proteins represent a versatile group of modified macromolecules. The methacrylic group is capable of undergoing a gelling process through a photo-crosslinking polymerization into the macromolecule backbone. This chapter presents an overview of the methacrylation reaction of biopolymers, such as chitosan, laminarin, hyaluronic acid, dextran, gellan gum, gelatin and platelet lysates, developed by our research group. The biomedical applications, such as tissue engineering, therapeutic delivery and stem cells modulation, are highlighted.