Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Drug repurposing is a new method for disease treatments, which accelerates the identification of new uses for existing drugs with minimal side effects for patients. MicroRNA-based therapeutics are a class of drugs that have been used in gene therapy following the FDA’s approval of the first anti-sense therapy. This study examines the effects of oxLDL on vascular smooth muscle cells (VSMCs) and identifies potential drugs and antimiRs for treating VSMC-associated diseases. The Connectivity Map (cMap) database is utilized to identify potential new uses of existing drugs. The success of the identifications was supported by MTT assay, clonogenic assay and clinical trial data. Specifically, 37 drugs, some of which are undergoing clinical trials, were identified. Three of the identified drugs exhibit IC50 activities. Among the 37 drugs’ targets, three differentially expressed genes (DEGs) are identified as drug targets by using both the DrugBank and the NCBI PubChem Compound databases. Also, one DEG, DNMT1, which is regulated by 17 miRNAs, where these miRNAs are potential targets for developing antimiR-based miRNA therapy, is found.
Noncoding DNA - once called “junk” has revealed itself to be full of function. Technology development has allowed researchers to gather genome-scale data pointing towards complex regulatory regions, expression and function of noncoding RNA genes, and conserved elements. Variation in these regions has been tied to variation in biological function and human disease. This PSB session tackles the problem of handling, analyzing and interpreting the data relating to variation in and interactions between noncoding regions through computational biology. We feature an invited speaker to how variation in transcription factor coding sequences impacts on sequence preference, along with submitted papers that span graph based methods, integrative analyses, machine learning, and dimension reduction to explore questions of basic biology, cancer, diabetes, and clinical relevance.