Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Genetic Algorithm with the Mixed Heuristics for Traveling Salesman Problem

    Traveling salesman problem (TSP) is one of well-known discrete optimization problems. The genetic algorithm is improved with the mixed heuristics to resolve TSP. The first heuristics is the four vertices and three lines inequality, which is applied to the 4-vertex paths to generate the shorter Hamiltonian cycles (HC). The second local heuristics is executed to reverse the i-vertex paths with more than two vertices, which also generates the shorter HCs. It is necessary that the two heuristics coordinate with each other in the optimization process. The time complexity of the first and second heuristics are O(n) and O(n3), respectively. The two heuristics are merged into the original genetic algorithm. The computation results show that the improved genetic algorithm with the mixed heuristics can find better solutions than the original GA does under the same conditions.