Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CONSTRUCTION AND CUSTOMIZATION OF STABLE OSCILLATION MODELS IN BIOLOGY

    Oscillations exist at all levels of biological systems and are often crucial for their proper functioning. Among the various types of oscillations, limit cycles have received particular attention for more than one hundred years. Specifically, theorems have been established that characterize whether a system might have the capability of exhibiting limit cycles. However, the practical application of these theorems is usually cumbersome and there are hardly any guidelines for devising de novo models that exhibit limit cycles of a desired form. In this paper, we propose a simple method for constructing and customizing stable limit cycles in two-dimensional systems according to desired features, including frequency, amplitude, and phase shift between system variables. The method is based on "inverting" a criterion proposed by Lewis for characterizing oscillations in two-dimensional S-system models. First, we execute comprehensive simulations that result in a set of over 2000 prototype limit cycles. Second, we show with examples how these prototypes can be further customized to adhere to predetermined specifications. This two-step process is fast and efficacious, especially when one considers the paucity of alternative methods. Finally, we illustrate how one may create systems with more complex dynamics by modulating the prototypes with external input signals.

  • articleOpen Access

    DESIGN AND ANALYSIS OF AN STATIC AEROELASTIC EXPERIMENT

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.