Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The extension principles play an important role in characterizing and constructing of wavelet frames. The common extension principles, the unitary extension principle (UEP) or the oblique extension principle (OEP), are based on the unitarity of the modulation matrix. In this paper, we state the UEP and OEP for refinable function vectors in the polyphase representation. Finally, we apply our results to directional wavelets on triangles which we have constructed in a previous work. We will show that the wavelet system generates a tight frame for L2(ℝ2).
A simple method of construction of a pair of orthogonal wavelet frames in L2(ℝd) is presented. This is a generalization of one-dimensional case to higher dimension. The construction is based on the well-known Unitary Extension Principle (UEP). The presented method produces the polyphase components of the filters of the wavelet functions, and hence the filters. A pair of orthogonal wavelet frames can be constructed with an extra condition. In the construction, the polyphase matrix is used as opposed to the modulation matrix. This is less restrictive and yields a fewer wavelet functions in the system than in the previously known constructions.