Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Actin polymerization driven stochastic movement of the bacteria Listeria monocytogenes is often measured using single-particle tracking (SPT) methodology and analyzed in terms of statistics. Experimental results suggested a dynamic association between the growing actin filaments and the propelled bacteria. Based on an alternative mathematical formalism for a Brownian ratchet (BR), we introduce such an attractive interaction into the one-dimensional BR model and show that its effect is equivalent to an external resistant force on the bacterium. Such a force significantly reduces the Brownian motion of a driven bacterium, and accentuates the stepping due to polymerization. We then consider the growth, with and without a barrier, of a filamentous bundle consisting of N identical filaments. It is shown that the bundle grows with a similar rate as a single filament in the absence of a load, but can oppose N times the external force under the stalling condition. A set of relationships describing the velocity of the bacterium movement (Vz) and its apparent diffusivity (Dz) as functions of the resistant force (F) and the number of filaments in a bundle (N) are obtained. The theoretical study suggests methods for data analysis in future experiments with applied external resistant force.