Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Gene regulatory networks (GRNs) control the production of proteins in cells. It is well-known that this process is not deterministic. Numerous studies employed a non-deterministic transition structure to model these networks. However, it is not realistic to expect state-to-state transition probabilities to remain constant throughout an organism’s lifetime. In this work, we focus on modeling GRN state transition (edge) variability using an ever-changing set of propensities. We suspect that the source of this variation is due to internal noise at the molecular level and can be modeled by introducing additional stochasticity into GRN models. We employ a beta distribution, whose parameters are estimated to capture the pattern inherent in edge behavior with minimum error. Additionally, we develop a method for obtaining propensities from a pre-determined network.