Au@MoS2-CdS, as ternary composite structure, was successfully synthesized by a facile process combining hydrothermal and seed-growth methods. The introduction of Au nanoparticles (NPs) into MoS2 spheres, forming a core–shell structure, demonstrates strong plasmonic absorption enhancement. The incorporation of CdS NPs into the Au@MoS2 core–shell structure further extends the absorption range of visible light and enhances exciton dissociation. The resultant composite structure exhibits the highest photocatalytic activity in photocatalytic degradation of rhodamine B (RhB) solution, compared with Au NPs, MoS2 spheres, Au@MoS2 core–shell and MoS2-CdS heterostructures. The above phenomena are supported by a series of characterization results such as SEM, TEM, XRD, EDS and UV-Vis, etc. Based on structural and morphological analyses, we propose the synthesis method of ternary composite structure photocatalysts, which is helpful for the synthesis of future multicomponent photocatalytic materials.