Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.
In this paper, we experimentally demonstrated multi-wavelength Brillouin–Raman fiber laser that operates in the L-band wavelength region. The laser structure utilizes the reverse-S-shaped technique. 35 output Brillouin Stokes signals were generated at the injection of 6.3 mW of Brillouin pump power at wavelength of 1580 nm into the laser cavity together with a Raman pump power of 891.25 mW. The generated output Brillouin Stokes signals are rigidly separated by 0.08 nm (10 GHz). The structure also provides a high tuning range of 25 nm, from 1570 nm to 1595 nm at the injection of 6.3 mW of Brillouin pump signal power with a Raman pump signal power of 795.3 mW. The generated Brillouin Stokes signals also have an average peak power of 1.11 mW. Highest optical signal-to-noise ratio of 21 dB was obtained at Brillouin pump wavelength of 1595 nm.