System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
We introduce a new approach to Vassiliev invariants. This approach deals with Vassiliev invariants directly on knots and does not make use of diagrams. We give a series of applications of this approach, (re)proving some new and known facts on Vassiliev invariants.
Let sQ be the satellite operation on knots defined by a pattern (V, Q), where V is a standard solid torus in S3 and Q ⊂ V is a knot that is geometrically essential in V. It is known (Kuperberg [5]) that if v is any knot invariant of order n ≥ 0, then v ◦ sQ is also a knot invariant of order ≤ n. We show that if the knot Q has the winding number zero in V, then the satellite map passes n-equivalent knots into (n + 1)-equivalent ones. Kalfagianni [4] has defined for each nonnegative integer n surgery n-trivial knots and studied their properties. It is known that for each n every surgery n-trivial knot is n-trivial. We show that for each n there are n-trivial knots which do not admit a non-unitary n-trivializer that show they to be surgery n-trivial. Przytycki showed [12] that if a knot Q is trivial in S3 and is embedded in V in such a way that it is k-trivial inside V and if a knot is m-trivial, then the satellite knot is (k + m + 1)-trivial. We establish a version of aforementioned Przytycki's result for surgery n-triviality, refining thus a construction for surgery n-trivial knots suggested by Kalfagianni.