Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, the chaotic phenomenon is reported in a bearing system. The chaotic dynamics of the new system is first derived from an available bearing system. The proposed system is then analyzed using various tools to observe its dynamical behaviors. Theoretical and simulation results confirm the presence of chaotic and periodic behaviors in the new bearing system.
We investigate nonlinear dynamical systems from the mode competition point of view, and propose the necessary conditions for a system to be chaotic. We conjecture that a chaotic system has at least two competitive modes (CM's). For a general nonlinear dynamical system, we give a simple, dynamically motivated definition of mode suitable for this concept. Since for most chaotic systems it is difficult to obtain the form of a CM, we focus on the competition between the corresponding modulated frequency components of the CM's. Some direct applications result from the explicit form of the frequency functions. One application is to estimate parameter regimes which may lead to chaos. It is shown that chaos may be found by analyzing the frequency function of the CM's without applying a numerical integration scheme. Another application is to create new chaotic systems using custom-designed CM's. Several new chaotic systems are reported.
In the last two years, many chaotic or hyperchaotic systems with megastability have been reported in the literature. The reported systems with megastability are mostly developed from their dynamic equations without any reference to the physical systems. In this paper, the dynamics of a single-link manipulator is considered to observe the existence of interesting dynamical behaviors. When the considered dynamical system is excited with (a) periodically forced input or (b) quasi-periodically forced input, it indicates the existence of megastability. This paper reports megastability in a physical dynamical system with infinitely many equilibria. The considered system has other dynamical behaviors like chaotic, quasi-periodic and periodic. These behaviors are analyzed using Lyapunov spectrum, bifurcation diagram and phase plots. The simulation results reveal that the objectives of the paper are achieved successfully.