Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The algebra of GLn-invariants of m-tuples of n×n matrices with respect to the action by simultaneous conjugation is a classical topic in case of infinite base field. On the other hand, in case of a finite field generators of polynomial invariants are not known even for a pair of 2×2 matrices. Working over an arbitrary field we classified all GL2-orbits on m-tuples of 2×2 nilpotent matrices for all m>0. As a consequence, we obtained a minimal separating set for the algebra of GL2-invariant polynomial functions of m-tuples of 2×2 nilpotent matrices. We also described the least possible number of elements of a separating set for an algebra of invariant polynomial functions over a finite field.