Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Multi-hop teleportation of N-qubit state via Bell states

    Multi-hop teleportation is a quantum teleportation scheme for transferring quantum states on a large scale. In this paper, a new multi-hop teleportation protocol is investigated for transferring arbitrary N-qubit states between M-neighbor nodes. In this scheme, intermediate nodes are connected with each other by symmetric entangled Bell states as quantum channels. First, one-hop teleportation of single-qubit, two-qubit and N-qubit states are introduced, then this method is generalized to two-hop and multi-hop teleportation for N-qubit. Also, we calculate the efficiency of this scheme.

  • articleNo Access

    On the Limit Cycles of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities

    We consider the class of polynomial differential equations ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y) in ℝ2 where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ ≠ μ, i.e. the class of polynomial differential systems with a linear node with different eigenvalues and homogeneous nonlinearities. For this class of polynomial differential equations, we study the existence and nonexistence of limit cycles surrounding the node localized at the origin of coordinates.

  • articleNo Access

    Electromagnetic induction between axons and their schwann cell myelin-protein sheaths

    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  • articleNo Access

    AN ENUMERATION METHOD FOR THE MINIMAL PATHS OF NETWORK SYSTEMS

    This paper presents a technique for the enumeration of minimal paths of two-terminal networks. The method is developed based on the multiway tree structure that has been used widely for sorting and searching. The new technique does not require any matrix multiplication; it only requires a connection matrix. Furthermore, this simple method has capability of evaluating the reliability of a network after a topological modification, without going through the entire evaluation process. The method is compared with the existing algorithms, and the application simplicity of this method is demonstrated through examples.