Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    FLEXIBLE NONLINEAR BLIND SIGNAL SEPARATION IN THE COMPLEX DOMAIN

    This paper introduces an Independent Component Analysis (ICA) approach to the separation of nonlinear mixtures in the complex domain. Source separation is performed by a complex INFOMAX approach. The neural network which realizes the separation employs the so called "Mirror Model" and is based on adaptive activation functions, whose shape is properly modified during learning. Nonlinear functions involved in the processing of complex signals are realized by pairs of spline neurons called "splitting functions", working on the real and the imaginary part of the signal respectively. Theoretical proof of existence and uniqueness of the solution under proper assumptions is also provided. In particular a simple adaptation algorithm is derived and some experimental results that demonstrate the effectiveness of the proposed solution are shown.