Please login to be able to save your searches and receive alerts for new content matching your search criteria.
For M a finite dimensional complex vector space and A a certain type of (unital) subalgebra of End(M) (including some specific types of physical significance in the field of quantum spin chains) we give an algorithm for constructing the centraliser or commutant B of A on M. We give examples, and discuss the conditions for centralising to be an involution, i.e. A, B a dual pair, and for B and A to be Morita equivalent. A special case of one example shows that Hn(q), Uq(sl2) act as a dual pair on the tensored vector representation for all q.