Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SELECTION OF THE GROUND STATE FOR NONLINEAR SCHRÖDINGER EQUATIONS

    We prove for a class of nonlinear Schrödinger systems (NLS) having two nonlinear bound states that the (generic) large time behavior is characterized by decay of the excited state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our analysis elucidates the mechanism through which initial conditions which are very near the excited state branch evolve into a (nonlinear) ground state, a phenomenon known as ground state selection. Key steps in the analysis are the introduction of a particular linearization and the derivation of a normal form which reflects the dynamics on all time scales and yields, in particular, nonlinear master equations. Then, a novel multiple time scale dynamic stability theory is developed. Consequently, we give a detailed description of the asymptotic behavior of the two bound state NLS for all small initial data. The methods are general and can be extended to treat NLS with more than two bound states and more general nonlinearities including those of Hartree–Fock type.

  • articleNo Access

    A REMARK ON LONG RANGE SCATTERING FOR THE NONLINEAR KLEIN–GORDON EQUATION

    We consider the scattering problem for the nonlinear Klein–Gordon Equation with long range nonlinearity in one dimension. We prove that for all prescribed asymptotic solutions there is a solution of the equation with such behavior, for some choice of initial data. In the case the nonlinearity has the good sign (repulsive) the result hold for arbitrary size asymptotic data. The method of proof is based on reducing the long range phase effects to an ODE; this is done via an appropriate ansatz. We also find the complete asymptotic expansion of the solutions.