Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We investigate a system of partial differential equations modeling ambipolar plasmas. The ambipolar — or zero current — model is obtained from general plasmas equations in the limit of vanishing Debye length. In this model, the electric field is expressed as a linear combination of macroscopic variable gradients. We establish that the governing equations can be written as a symmetric form by using entropic variables. The corresponding dissipation matrices satisfy the null space invariant property and the system of partial differential equations can be written as a normal form, i.e. in the form of a symmetric hyperbolic–parabolic composite system. By properly modifying the chemistry source terms and/or the diffusion matrices, asymptotic stability of equilibrium states is established and decay estimates are obtained. We also establish the continuous dependence of global solutions with respect to vanishing electron mass.