Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ASYMPTOTIC STABILITY OF EQUILIBRIUM STATES FOR AMBIPOLAR PLASMAS

    We investigate a system of partial differential equations modeling ambipolar plasmas. The ambipolar — or zero current — model is obtained from general plasmas equations in the limit of vanishing Debye length. In this model, the electric field is expressed as a linear combination of macroscopic variable gradients. We establish that the governing equations can be written as a symmetric form by using entropic variables. The corresponding dissipation matrices satisfy the null space invariant property and the system of partial differential equations can be written as a normal form, i.e. in the form of a symmetric hyperbolic–parabolic composite system. By properly modifying the chemistry source terms and/or the diffusion matrices, asymptotic stability of equilibrium states is established and decay estimates are obtained. We also establish the continuous dependence of global solutions with respect to vanishing electron mass.