Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Deep Regression Approach for Human Activity Recognition Under Partial Occlusion

    In real-life scenarios, Human Activity Recognition (HAR) from video data is prone to occlusion of one or more body parts of the human subjects involved. Although it is common sense that the recognition of the majority of activities strongly depends on the motion of some body parts, which when occluded compromise the performance of recognition approaches, this problem is often underestimated in contemporary research works. Currently, training and evaluation is based on datasets that have been shot under laboratory (ideal) conditions, i.e. without any kind of occlusion. In this work, we propose an approach for HAR in the presence of partial occlusion, in cases wherein up to two body parts are involved. We assume that human motion is modeled using a set of 3D skeletal joints and also that occluded body parts remain occluded during the whole duration of the activity. We solve this problem using regression, performed by a novel deep Convolutional Recurrent Neural Network (CRNN). Specifically, given a partially occluded skeleton, we attempt to reconstruct the missing information regarding the motion of its occluded part(s). We evaluate our approach using four publicly available human motion datasets. Our experimental results indicate a significant increase of performance, when compared to baseline approaches, wherein networks that have been trained using only nonoccluded or both occluded and nonoccluded samples are evaluated using occluded samples. To the best of our knowledge, this is the first research work that formulates and copes with the problem of HAR under occlusion as a regression task.

  • articleNo Access

    SpliceViNCI: Visualizing the splicing of non-canonical introns through recurrent neural networks

    Most of the current computational models for splice junction prediction are based on the identification of canonical splice junctions. However, it is observed that the junctions lacking the consensus dimers GT and AG also undergo splicing. Identification of such splice junctions, called the non-canonical splice junctions, is also essential for a comprehensive understanding of the splicing phenomenon. This work focuses on the identification of non-canonical splice junctions through the application of a bidirectional long short-term memory (BLSTM) network. Furthermore, we apply a back-propagation-based (integrated gradient) and a perturbation-based (occlusion) visualization techniques to extract the non-canonical splicing features learned by the model. The features obtained are validated with the existing knowledge from the literature. Integrated gradient extracts features that comprise contiguous nucleotides, whereas occlusion extracts features that are individual nucleotides distributed across the sequence.