Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Classical and Computational Solid Mechanics
Classical and Computational Solid Mechanics

2nd Edition
by Y C Fung, Pin Tong and Xiaohong Chen
Introduction to Micromechanics and Nanomechanics
Introduction to Micromechanics and Nanomechanics

2nd Edition
by Shaofan Li and Gang Wang
Practical Railway Engineering
Practical Railway Engineering

2nd Edition
by Clifford F Bonnett

 

  • articleNo Access

    REACTIVE SELF COLLISION AVOIDANCE WITH DYNAMIC TASK PRIORITIZATION FOR HUMANOID ROBOTS

    We propose a self collision avoidance system for humanoid robots designed for interacting with the real world. It protects not only the humanoid robots' hardware but also expands its working range while keeping smooth motions. It runs in real-time in order to handle unpredictable reactive tasks such as reaching to moving targets tracked by vision during dynamic motions like e.g. biped walking.

    The collision avoidance is composed of two important elements. The first element is reactive self collision avoidance which controls critical segments in only one direction — as opposed to other methods which use 3D position control. The virtual force for the collision avoidance is applied to this direction and therefore the system has more redundant degrees of freedom which can be used for other criteria. The other second element is a dynamic task prioritization scheme which blends the priority between target reaching and collision avoidance motions in a simple way. The priority between the two controllers is changed depending on current risk.

    We test the algorithm on our humanoid robot ASIMO and works while the robot is standing and walking. Reaching motions from the front to the side of the body without the arm colliding with the body are possible. Even if the target is inside the body, the arm stops at the closest point to the target outside the body. The collision avoidance is working as one module of a hierarchical reactive system and realizes reactive motions. The proposed scheme can be used for other applications: We also apply it to realizing a body schema and occlusion avoidance.