Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Inference and Decision in Credal Occupancy Grids: Use Case on Trajectory Planning

    Occupancy grids are common tools used in robotics to represent the robot environment, and that may be used to plan trajectories, select additional measurements to acquire, etc. However, deriving information about those occupancy grids from sensor measurements often induce a lot of uncertainty, especially for grid elements that correspond to occluded or far away area from the robot. This means that occupancy information may be quite uncertain and imprecise at some places, while being very accurate at others. Modelling finely this occupancy information is essential to decide the optimal action the robot should take, but a refined modelling of uncertainty often implies a higher computational cost, a prohibitive feature for real-time applications. In this paper, we introduce the notion of credal occupancy grids, using the very general theory of imprecise probabilities to model occupancy uncertainty. We also show how one can perform efficient, real-time inferences with such a model, and show a use-case applying the model to an autonomous vehicle trajectory planning problem.

  • articleNo Access

    End-to-End Learning of Semantic Grid Estimation Deep Neural Network with Occupancy Grids

    Unmanned Systems01 Jul 2019

    We propose semantic grid, a spatial 2D map of the environment around an autonomous vehicle consisting of cells which represent the semantic information of the corresponding region such as car, road, vegetation, bikes, etc. It consists of an integration of an occupancy grid, which computes the grid states with a Bayesian filter approach, and semantic segmentation information from monocular RGB images, which is obtained with a deep neural network. The network fuses the information and can be trained in an end-to-end manner. The output of the neural network is refined with a conditional random field. The proposed method is tested in various datasets (KITTI dataset, Inria-Chroma dataset and SYNTHIA) and different deep neural network architectures are compared.

  • chapterNo Access

    SENSOR FUSION- SONAR AND STEREO VISION, USING OCCUPANCY GRIDS AND SIFT

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a SDF (Sensor Data Fusion) architecture. This approach involves combined sonar and stereo vision readings. Sonar readings are interpreted using probability density functions to the occupied and empty regions. SIFT (Scale Invariant Feature Transform) feature descriptors are interpreted using gaussian probabilistic error models. The use of occupancy grids is proposed for representing the sonar as well as the features descriptors readings. The Bayesian estimation approach is applied to update the sonar and the SIFT descriptors' uncertainty grids. The sensor fusion yields a significant reduction in the uncertainty of the occupancy grid compared to the individual sensor readings.