Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RESOURCE ALLOCATION STRATEGIES FOR CONSTRUCTIVE IN-NETWORK STREAM PROCESSING

    In this paper we consider the operator mapping problem for in-network stream processing applications. In-network stream processing consists in applying a tree of operators in steady-state to multiple data objects that are continually updated at various locations on a network. Examples of in-network stream processing include the processing of data in a sensor network, or of continuous queries on distributed relational databases. We study the operator mapping problem in a "constructive" scenario, i.e., a scenario in which one builds a platform dedicated to the application by purchasing processing servers with various costs and capabilities. The objective is to minimize the cost of the platform while ensuring that the application achieves a minimum steady-state throughput. The first contribution of this paper is the formalization of a set of relevant operator-placement problems, and a proof that even simple versions of the problem are NP-complete. Our second contribution is the design of several polynomial time heuristics, which are evaluated via extensive simulations and compared to theoretical bounds for optimal solutions.