Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Nanowire-type plasmonic waveguides as strong and tunable optical tweezers

    A series of nanowire-type plasmonic waveguides are proposed. The mode properties of these waveguides and their dependences on various geometry parameters are studied. It is shown that they can generate deep subwavelength confinement and long-range propagation simultaneously. Moreover, the optical forces exerted on dielectric nanoparticles by these waveguides are calculated. It is found that the optical trapping forces are very strong, and that their distribution can be effectively regulated by certain geometry parameters. Using these features, strong and tunable near-field optical tweezers can be designed.

  • articleNo Access

    A DUAL OPTICAL TWEEZER FOR MICRORHEOLOGY OF BACTERIAL SUSPENSIONS

    A dual optical tweezer has been built around an inverted microscope with high numerical aperture objective (N.A 1.4). The setup is versatile and can be used both as a single and a dual tweezer, and in the dual mode, enables us to optically trap two micron-sized latex beads within a few microns from each other in solution. Using this setup, we report measurements of the microrheological parameters of Pseudomonas fluorescens and Bacillus subtilis bacterial suspensions. We study the variation of viscoelastic moduli of these bacterial suspensions as a function of their cell count in solution. A comparison with inactive bacteria of corresponding cell count enables us to characterize the activity of the bacterial samples in terms of an average force that the bacteria exerts on the trapped bead. This work paves way for studies of interesting nonlinear rheological phenomena at small length scales.