Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach

    Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.