In the three-body problem, it is known that there exists a special set of periodic orbits: spatial isosceles periodic orbits. In each period, one body moves up and down along a straight line, and the other two bodies rotate around this line. In this work, we revisit this set of orbits by applying variational method. Two unexpected phenomena are discovered. First, this set is not always spatial. It actually bifurcates from the circular Euler (central configuration) orbit to the Broucke (collision) orbit. Second, one of the orbits in this set encounters an oscillating behavior. By running its initial condition, the orbit stays periodic for only a few periods before it becomes irregular. However, it moves close to another periodic shape in a while. Shortly it falls apart again and starts running close to a third periodic shape after a moment. This oscillation continues as t increases. Actually, up to t = 1.2 × 105, the orbit is bounded and keeps oscillating between periodic shapes and irregular motions.