Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these scales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
The urban ferry system can carry a large number of travelers, which may alleviate the pressure on road traffic. As an indicator of its service quality, service time reliability (STR) plays an essential part in attracting travelers to the ferry system. A wide array of studies have been conducted to analyze the STR of land transportation. However, the STR of ferry systems has received little attention in the transportation literature. In this study, a model was established to obtain the STR in urban ferry systems. First, the probability density function (PDF) of the service time provided by ferry systems was constructed. Considering the deficiency of the queuing theory, this PDF was determined by Bayes’ theorem. Then, to validate the function, the results of the proposed model were compared with those of the Monte Carlo simulation. With the PDF, the reliability could be determined mathematically by integration. Results showed how the factors including the frequency, capacity, time schedule and ferry waiting time affected the STR under different degrees of congestion in ferry systems. Based on these results, some strategies for improving the STR were proposed. These findings are of great significance to increasing the share of ferries among various urban transport modes.
The COMPASS experiment is investigating possible physics aspects connect with the use of the polarized target (PT) together with the secondary (CERN–SPS) hadron beams. The main purpose of this project is to study the Drell–Yan reactions as a clear tool to measure the parton distribution functions, in particular the Boer-Mulders, the Sivers and the transversity functions.